Edge theorem for finite partially ordered sets

Milan R. Tasković

Archivum Mathematicum (1990)

  • Volume: 026, Issue: 1, page 1-5
  • ISSN: 0044-8753

How to cite

top

Tasković, Milan R.. "Edge theorem for finite partially ordered sets." Archivum Mathematicum 026.1 (1990): 1-5. <http://eudml.org/doc/18278>.

@article{Tasković1990,
author = {Tasković, Milan R.},
journal = {Archivum Mathematicum},
keywords = {crown; fixed point; fixed edge theorem; antitone map; dismantlable},
language = {eng},
number = {1},
pages = {1-5},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Edge theorem for finite partially ordered sets},
url = {http://eudml.org/doc/18278},
volume = {026},
year = {1990},
}

TY - JOUR
AU - Tasković, Milan R.
TI - Edge theorem for finite partially ordered sets
JO - Archivum Mathematicum
PY - 1990
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 026
IS - 1
SP - 1
EP - 5
LA - eng
KW - crown; fixed point; fixed edge theorem; antitone map; dismantlable
UR - http://eudml.org/doc/18278
ER -

References

top
  1. K. Baclawski, A. Björner, Fixed points in partially ordered sets, Advances in Math. 31 (1979), 263-287. (1979) Zbl0417.06002MR0532835
  2. C. Blair, A. Roth, An extension and simple proof of a constrained lattice fixed point theorem, Algebra Universalis 9 (1979), 131 -132. (1979) Zbl0421.06005MR0508675
  3. J. Klimeš, Fixed edge theorems for complete lattices, Arch. Math. 4. scripta, 17 (1981), 227-234. (1981) Zbl0477.06003
  4. D. Kurepa, Fixpoints of decreasing mappings of ordered sets, Publ. Inst. Math., 32 (1975), 111-116. (1975) Zbl0339.54037MR0369189
  5. I. Rival, A fixed point theorem for finite partially ordered sets, J. Combin. Theory, 21 (A), 1976, 309-318. (1976) MR0419308
  6. A. Tarski, A lattice theoretical fixpoint theorem and its applications, Pacific J. Math., 5 (1955), 283-309. (1955) Zbl0064.26004MR0074376
  7. A. Björner, Order-reversing maps and unique fixed points in complete lattices, Algebra Universalis 12 (1981), 402-403. (1981) MR0624306

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.