Edge theorem for finite partially ordered sets
Archivum Mathematicum (1990)
- Volume: 026, Issue: 1, page 1-5
- ISSN: 0044-8753
Access Full Article
topHow to cite
topTasković, Milan R.. "Edge theorem for finite partially ordered sets." Archivum Mathematicum 026.1 (1990): 1-5. <http://eudml.org/doc/18278>.
@article{Tasković1990,
author = {Tasković, Milan R.},
journal = {Archivum Mathematicum},
keywords = {crown; fixed point; fixed edge theorem; antitone map; dismantlable},
language = {eng},
number = {1},
pages = {1-5},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Edge theorem for finite partially ordered sets},
url = {http://eudml.org/doc/18278},
volume = {026},
year = {1990},
}
TY - JOUR
AU - Tasković, Milan R.
TI - Edge theorem for finite partially ordered sets
JO - Archivum Mathematicum
PY - 1990
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 026
IS - 1
SP - 1
EP - 5
LA - eng
KW - crown; fixed point; fixed edge theorem; antitone map; dismantlable
UR - http://eudml.org/doc/18278
ER -
References
top- K. Baclawski, A. Björner, Fixed points in partially ordered sets, Advances in Math. 31 (1979), 263-287. (1979) MR0532835
- C. Blair, A. Roth, An extension and simple proof of a constrained lattice fixed point theorem, Algebra Universalis 9 (1979), 131 -132. (1979) Zbl0421.06005MR0508675
- J. Klimeš, Fixed edge theorems for complete lattices, Arch. Math. 4. scripta, 17 (1981), 227-234. (1981)
- D. Kurepa, Fixpoints of decreasing mappings of ordered sets, Publ. Inst. Math., 32 (1975), 111-116. (1975) Zbl0339.54037MR0369189
- I. Rival, A fixed point theorem for finite partially ordered sets, J. Combin. Theory, 21 (A), 1976, 309-318. (1976) MR0419308
- A. Tarski, A lattice theoretical fixpoint theorem and its applications, Pacific J. Math., 5 (1955), 283-309. (1955) Zbl0064.26004MR0074376
- A. Björner, Order-reversing maps and unique fixed points in complete lattices, Algebra Universalis 12 (1981), 402-403. (1981) MR0624306
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.