On oscillatory solutions of nonlinear differential equations of the n -th order vanishing at infinity

Miroslav Bartušek

Archivum Mathematicum (1990)

  • Volume: 026, Issue: 2-3, page 83-91
  • ISSN: 0044-8753

How to cite

top

Bartušek, Miroslav. "On oscillatory solutions of nonlinear differential equations of the $n$-th order vanishing at infinity." Archivum Mathematicum 026.2-3 (1990): 83-91. <http://eudml.org/doc/18288>.

@article{Bartušek1990,
author = {Bartušek, Miroslav},
journal = {Archivum Mathematicum},
keywords = {nonlinear oscillations; differential equation; proper oscillatory solution},
language = {eng},
number = {2-3},
pages = {83-91},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On oscillatory solutions of nonlinear differential equations of the $n$-th order vanishing at infinity},
url = {http://eudml.org/doc/18288},
volume = {026},
year = {1990},
}

TY - JOUR
AU - Bartušek, Miroslav
TI - On oscillatory solutions of nonlinear differential equations of the $n$-th order vanishing at infinity
JO - Archivum Mathematicum
PY - 1990
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 026
IS - 2-3
SP - 83
EP - 91
LA - eng
KW - nonlinear oscillations; differential equation; proper oscillatory solution
UR - http://eudml.org/doc/18288
ER -

References

top
  1. M. Bartušek, The Asymptotic Behaviour of Oscillatory Solutions of the Equation of the Fourth Order, Arch. Math. (Brno), 21, No. 2 (1985), 93-104. (1985) Zbl0579.34040MR0817551
  2. 12] M. Bartušek, On Properties of Oscillatory Solutions of Non-linear Differential Equations of the n-th Order, Differential Equations and Their Applications, Equadiff 6, Proc. бth Int. Coпf. Brno, Lecture Notes Matћ., 1192, 107-113. Zbl0603.34026
  3. 13] M. Bartušek, On Oscillatory Solution of the Differential Equation of the n-th Order, Arch. Math. (Brno), 22, No. 3 (1986), 145-156. (1986) Zbl0622.34030MR0868130
  4. M. Bartušek, On Proper Oscillatory Solutions of the Non-linear Differential Equations of the n-th Order, Arch. Math. (Brno), 24, No. 2 (1988), 89-98. (1988) Zbl0705.34036MR0983227
  5. F. Beckeпbach R. Bellman, Inequalities, Springeг Verlag, Berlin, 1961. (1961) MR0158038
  6. 16] И. T. Қигypaдзe, Heкomopыe cuнгyляpныe кpaeвыe зaдaчu для oбыкнoвeнныx дuффepeнцuaльныx ypaянeнuщ, Из. Tбилиc. yнив., Tбилиcи, 1975. (1975) 
  7. I. T. Kiguradze, On Vanishing at Infinity of Solutions of Ordinary Differential Equations, Czech. Math. J., 33 (108) 1983, 613-646. (1983) Zbl0567.34038MR0721090
  8. И. T. Kигypaдзe, Oб oднoй кpaeвoй зaдaчe c ycлoвueм нa бecкoнeчнocmu для oбыкнoвeнныx дuффepeнuuaльныx ypaвнeнuй выcшux nopядкoв, Tp. Bcecoюзнoгo cимпoзиyмa в Tбилиcи 21-23 aп. 1982 г. Изд. Tбилиc. yн-тa, Tбилиcи 1986, 91-105. (1982) 
  9. J. S. E. Wong, On the Generalized Emden-Fowler Equation, SIAM Rev., 17, No. 2, 1975, 339-360. (1975) Zbl0295.34026MR0367368

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.