A class of one-dimensional degenerate parabolic equations

John A. Nohel

Časopis pro pěstování matematiky (1986)

  • Volume: 111, Issue: 3, page 294-303
  • ISSN: 0528-2195

How to cite

top

Nohel, John A.. "A class of one-dimensional degenerate parabolic equations." Časopis pro pěstování matematiky 111.3 (1986): 294-303. <http://eudml.org/doc/18983>.

@article{Nohel1986,
author = {Nohel, John A.},
journal = {Časopis pro pěstování matematiky},
keywords = {free boundary; Cauchy problems; selfsimilar solution; comparison method},
language = {eng},
number = {3},
pages = {294-303},
publisher = {Mathematical Institute of the Czechoslovak Academy of Sciences},
title = {A class of one-dimensional degenerate parabolic equations},
url = {http://eudml.org/doc/18983},
volume = {111},
year = {1986},
}

TY - JOUR
AU - Nohel, John A.
TI - A class of one-dimensional degenerate parabolic equations
JO - Časopis pro pěstování matematiky
PY - 1986
PB - Mathematical Institute of the Czechoslovak Academy of Sciences
VL - 111
IS - 3
SP - 294
EP - 303
LA - eng
KW - free boundary; Cauchy problems; selfsimilar solution; comparison method
UR - http://eudml.org/doc/18983
ER -

References

top
  1. Bateman Manuscript Project, A. Erdélyi, ed., McGraw Hill, 1954. (1954) 
  2. P. Benilan M. G. Crandall, A. Pazy, M -Аccretive operators, to appear. 
  3. P. Benilan M. G. Crandall, M. Pierre, Solutions of the porous medium equation in Rn under optimal conditions on initial values, Indiana Univ. Мath. J. 33 (1984), 51-87. (1984) Zbl0552.35045MR0726106
  4. M. Bertsch P. de Mottoni, L. A. Peletier, The Stefan problem with heating: Аppearance and disappearance of a mushy region, Math. Inst. Univ. of Leiden, The Netherlands, Report No. 18, Аugust, 1984. (1984) Zbl0604.35081
  5. C. Bender, S. Orszag, Аdvanced Mathematical Methods for Ѕcientists and Engineers, McGraw Hill, 1978 MR0538168
  6. L. C. Evans, Аpplication of nonlinear semigroup theory to certain partial differential equations, in: Nonlinear Evolution Equations, M. G. Сrandall, ed., Аcademic Press, 1952. (1952) MR0513818
  7. A. Fasano, M. Primicerio, General free boundary problems for the heat equation, I, J. Math. Аnal. Аppl. 57 (1977), 694-723. (1977) Zbl0348.35047MR0487016
  8. A. Fasano, M. Primicerio, General free boundary problems for the heat equation, II, J. Math. Аnal. Аppl. 58 (1977), 202-231. (1977) Zbl0355.35037MR0487017
  9. K. Höllig, Existence of infinitely many solutions for a forward backward heat equation, Trans. Аmer. Math. Ѕoc. 278 (1983), 299-316. (1983) MR0697076
  10. K. Höllig, J. A. Nohel, А diffusion equation with a nonmonotone constitutive function, Proceedings NАTO/LONDON Math. Ѕoc. Сonf. on Ѕystems of Nonlinear Partial Differential Equations, Ј. M. Ball, ed., Reidel Publishing Сo. (1983), 409-422. (1983) 
  11. K. Höllig, J. A. Nohel, А nonlinear integral equation occurring in a singular free boundary problem, Trans. Аmer. Math. Ѕoc. 283 (1984), 145-155. (1984) MR0735412
  12. K. Höllig, J. A. Nohel, А singular free boundary problem, MRС Technical Ѕummary Report # 2582, Mathematics Research Сenter, University of Wisconsin-Madison. 
  13. D. Kinderlehrer, L. Nirenberg, Regularity in free boundary pгoblems, Аnnali dela ЅNЅ4 (1977), З7З-З91. (1977) Zbl0352.35023MR0440187
  14. D. Schaeffer, А new proof of the infinite differentiability of the free boundary in the Ѕtefan problem, Ј. Diff. Equa. 20 (1976), 266-269. (1976) MR0390499
  15. J. L. Vázquez, Degenerate Parabolic Problems, IMА, University of Minnesota (Preprint) 
  16. J. L. Vázquez, The interfaces of one-dimensional flows in porous media, Trans. Аmer. Math. Ѕoc. 285 (1984), 111-131. (1984) Zbl0524.35060MR0752500

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.