On upper embeddability of complementary graphs

Ladislav Nebeský

Časopis pro pěstování matematiky (1983)

  • Volume: 108, Issue: 2, page 214-217
  • ISSN: 0528-2195

How to cite

top

Nebeský, Ladislav. "On upper embeddability of complementary graphs." Časopis pro pěstování matematiky 108.2 (1983): 214-217. <http://eudml.org/doc/19245>.

@article{Nebeský1983,
author = {Nebeský, Ladislav},
journal = {Časopis pro pěstování matematiky},
keywords = {upper embeddable; 2-cell embedding; orientable surface; genus},
language = {eng},
number = {2},
pages = {214-217},
publisher = {Mathematical Institute of the Czechoslovak Academy of Sciences},
title = {On upper embeddability of complementary graphs},
url = {http://eudml.org/doc/19245},
volume = {108},
year = {1983},
}

TY - JOUR
AU - Nebeský, Ladislav
TI - On upper embeddability of complementary graphs
JO - Časopis pro pěstování matematiky
PY - 1983
PB - Mathematical Institute of the Czechoslovak Academy of Sciences
VL - 108
IS - 2
SP - 214
EP - 217
LA - eng
KW - upper embeddable; 2-cell embedding; orientable surface; genus
UR - http://eudml.org/doc/19245
ER -

References

top
  1. M. Behzad G. Chartrand, L. Lesniak-Foster, Graphs & Digraphs, Prindle, Weber & Schmidt, Boston 1979. (1979) Zbl0403.05027MR0525578
  2. N. P. Homenko N. A. Ostroverkhy, V. A. Kusmenko, The maximum genus of a graph, (in Ukrainian, English summary). φ-peretvorennya grafiv (N. P. Homenko, ed.). IМ АN URSR, Kiev 1973, pp. 180-210. (1973) MR0351870
  3. M. Jungerman, А characterization of upper embeddable graphs, Trans. Аmer. Math. Soc. 241 (1978), 401-406. (1978) Zbl0379.05025MR0492309
  4. L. Nebeský, А new characterization of the maximum genus of a graph, Czech. Math. J. 31 (106) (1981), 604-613. (1981) Zbl0482.05034MR0631605
  5. C. Payan, N. H. Xuong, Upper embeddability and connectivity of graphs, Discrete Math. 27 (1979), 71-80. (1979) Zbl0407.05028MR0534954
  6. R. D. Ringeisen, Survey of results on the maximum genus of a graph, J. Graph Theory 3 (1979), 1-13. (1979) Zbl0398.05029MR0519169
  7. G. Ringel, Map Сolor Theorem, Springer-Verlag, Berlin 1974. (1974) MR0349461
  8. G. Ringel, The combinatorial map color theorem, J. Graph Theory 1 (1977), 141 - 155. (1977) Zbl0386.05030MR0444509
  9. S. Stahl, The embeddings of a graph - a survey, J. Graph Theory 2 (1978), 275-298. (1978) Zbl0406.05027MR0512799
  10. A. T. White, Graphs, Groups, and Ѕurfaces, North Holland, Аmsterdam 1973. (1973) 
  11. N. H. Xuong, How to determine the maximum genus of a graph, J. Сombinatorial Тheory 26, Ѕer. B (1979), 217-225. (1979) Zbl0403.05035MR0532589

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.