A new characterization of the maximum genus of a graph
Czechoslovak Mathematical Journal (1981)
- Volume: 31, Issue: 4, page 604-613
- ISSN: 0011-4642
Access Full Article
topHow to cite
topNebeský, Ladislav. "A new characterization of the maximum genus of a graph." Czechoslovak Mathematical Journal 31.4 (1981): 604-613. <http://eudml.org/doc/13289>.
@article{Nebeský1981,
author = {Nebeský, Ladislav},
journal = {Czechoslovak Mathematical Journal},
keywords = {Betti number of a graph},
language = {eng},
number = {4},
pages = {604-613},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A new characterization of the maximum genus of a graph},
url = {http://eudml.org/doc/13289},
volume = {31},
year = {1981},
}
TY - JOUR
AU - Nebeský, Ladislav
TI - A new characterization of the maximum genus of a graph
JO - Czechoslovak Mathematical Journal
PY - 1981
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 31
IS - 4
SP - 604
EP - 613
LA - eng
KW - Betti number of a graph
UR - http://eudml.org/doc/13289
ER -
References
top- I. Anderson, 10.1016/0095-8956(71)90041-4, J. Combinatorial Theory 10 В (1971), 183-186. (1971) Zbl0172.48904MR0276105DOI10.1016/0095-8956(71)90041-4
- M. Behzad G. Chartrand, L. Lesniak-Foster, Graphs & Digraphs, Prindle, Weber & Schmidt, Boston 1979. (1979) MR0525578
- R. A. Duke, 10.4153/CJM-1966-081-6, Canad. J. Math. 18 (1966), 817-822. (1966) Zbl0141.21302MR0196731DOI10.4153/CJM-1966-081-6
- J. Edmonds, D. R. Fulkerson, 10.6028/jres.069B.016, J. Res. Nat. Bur. Stand. В 69 (1965), 147-153. (1965) Zbl0141.21801MR0188090DOI10.6028/jres.069B.016
- F. Harary, Graph Theory, Addison-Wesley, Reading (Mass.) 1969. (1969) Zbl0196.27202MR0256911
- N. P. Homenko, Method of -transformations and some its applications, (in Ukrainian, English summary). -peretvorennya grafiv (N. P. Homenko, ed.). IM AN URSR, Kiev 1973, pp. 35-96. (1973) MR0411995
- N. P. Homenko N. A. Ostroverkhy, V. A. Kusmenko, The maximum genus of a graph, (in Ukrainian, EngHsh summary). (-peretvorennya grafiv (N. P. Homenko, ed.). IM AN URSR, Kiev 1973, pp. 180-210. (1973)
- M. Jungerman, A characterization of upper embeddable graphs, Trans. Amer. Math. Soc. 241 (1978), 401-406. (1978) Zbl0379.05025MR0492309
- E. A. Nordhaus R. D. Ringeisen В. M. Stewart, and A. T. White, 10.1016/0095-8956(72)90040-8, J. Combinatorial Theory 12 В (1972), 260-267. (1972) MR0299523DOI10.1016/0095-8956(72)90040-8
- E. A. Nordhaus В. M. Stewart, and A. T. White, 10.1016/0095-8956(71)90036-0, J. Combinatorial Theory 11 В (1971), 258-267. (1971) MR0286713DOI10.1016/0095-8956(71)90036-0
- R. D. Ringeisen, 10.1002/jgt.3190030102, J. Graph Theory 3 (1979), 1-13. (1979) Zbl0398.05029MR0519169DOI10.1002/jgt.3190030102
- G. Ringel, Map Color Theorem, Springer-Verlag, Berlin 1974. (1974) Zbl0287.05102MR0349461
- W. T. Tutte, On the problem of decomposing a graph into n connected factors, J. London Math. Soc. 36 (1961), 221-230. (1961) Zbl0096.38001MR0140438
- A. T. White, Graphs of groups on surfaces, In: Combinatorial Surveys: Proceedings of the Sixth British Combinatorial Conference (P. J. Cameron, ed.). Academic Press, London 1977, pp. 165-197. (1977) Zbl0378.05028MR0491290
- R. J. Wilson, Introduction to Graph Theory, Longman, London 1972. (1972) Zbl0249.05101MR0826772
- N. H. Xuong, 10.1016/0095-8956(79)90058-3, J. Combinatorial Theory 26 В (1979), 217-225. (1979) Zbl0403.05035MR0532589DOI10.1016/0095-8956(79)90058-3
- J. W. T. Youngs, Minimal embeddings and the genus of a graph, J. Math. Mech. 12 (1963), 303-315. (1963) MR0145512
Citations in EuDML Documents
top- Ladislav Nebeský, Upper embeddable factorizations of graphs
- Ladislav Nebeský, A note on upper embeddable graphs
- Ladislav Nebeský, On upper embeddability of complementary graphs
- Ladislav Nebeský, Characterizing the maximum genus of a connected graph
- Ladislav Nebeský, On 2-cell embeddings of graphs with minimum numbers of regions
- Ladislav Nebeský, Certain cubic multigraphs and their upper embeddability
- Martin Škoviera, The decay number and the maximum genus of a graph
- Yuanqiu Huang, Yan Pei Liu, Face size and the maximum genus of a graph. II: Nonsimple graphs
- Ladislav Nebeský, On locally quasiconnected graphs and their upper embeddability
- Hung-Lin Fu, Martin Škoviera, Ming-Chun Tsai, The maximum genus, matchings and the cycle space of a graph
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.