Approximation by bounded analytic functions

J. L. Walsh

  • Publisher: Gauthier-Villars, 1960

How to cite

top

Walsh, J. L.. Approximation by bounded analytic functions. 1960. <http://eudml.org/doc/192664>.

@book{Walsh1960,
author = {Walsh, J. L.},
keywords = {complex functions},
language = {eng},
publisher = {Gauthier-Villars},
title = {Approximation by bounded analytic functions},
url = {http://eudml.org/doc/192664},
year = {1960},
}

TY - BOOK
AU - Walsh, J. L.
TI - Approximation by bounded analytic functions
PY - 1960
PB - Gauthier-Villars
LA - eng
KW - complex functions
UR - http://eudml.org/doc/192664
ER -

References

top
  1. Références in the text are made by citing the dates indicated; further références are given in [1935]. 
  2. [1919] C. J. DE LA VALLÉE POUSSIN, l'approximation des fonctions d'une variable réelle, Paris. JFM46.0416.03
  3. [1934] J. L. WALSH and H. G. RUSSELL, On the convergence and overconvergence of sequences of polynomials of best simultaneous approximation to several functions analytic in distinct regions (Trans. Amer. Math. Soc., vol. 36, p. 13-28). Zbl0008.21402MR1501732
  4. [1935] J. L. WALSH, Interpolation and approximation by rational functions in the complex domain (Colloquium Publications of the Amer. Math. Soc., vol. 20; second edition, 1956). Zbl0146.29902MR218588JFM61.0315.01
  5. [1936] J. H. CURTISS, A note on degree of polynomial approximation (Bull. Amer. Math. Soc., vol. 42, p. 873-878). Zbl0016.01903MR1563457JFM62.1205.02
  6. [1937] J. L. WALSH and W. E. SEWELL, Note on the relation between continuity and degree of polynomial approximation in the complex domain (Bull. Amer. Math. Soc., vol. 43, p. 557-563). Zbl0017.39503MR1563586JFM63.0259.01
  7. [1938] J. L. WALSH, On interpolation and approximation by functions analytic and bounded in a given region (Proc Nat. Acad. Sc., vol. 24, p. 477-486). Zbl0019.40401JFM64.0290.01
  8. [1939] J. L. WALSH, On interpolation by functions analytic and bounded in a given region (Trans. Amer. Math. Soc., vol. 46, p. 46 65). Zbl0021.39904MR55JFM65.0323.01
  9. [1940] J. L. WALSH, Note on the degree of convergence of sequence of analytic functions (Trans. Amer. Math. Soc., vol. 47, p. 293-304). Zbl0025.32002MR1866
  10. [1942] W. E. SEWELL, Degree of approximation by polynomials in the complex domain (Ann. Math. Studies, N°. 9). Zbl0063.08342MR7054JFM64.0274.03
  11. [1944] E. N. NILSON and J. L. WALSH, Interpolation and approximation by functions analytic and bounded in a given region (Trans. Amer. Math. Soc., vol. 55, p. 53 67). Zbl0061.14210MR9196
  12. [1945] A. ZYGMUND, Smooth functions (Duke Math. J., vol. 12, p. 47-76). Zbl0060.13806MR12691
  13. [1946] J. L. WALSH, Taylor's series and approximation to analytic functions (Bull. Amer. Math. Soc., vol. 52, p. 572-579). Zbl0061.14304MR17362
  14. [1946 a] J. L. WALSH, Overconvergence, degree of convergence, and zeros of sequences of analytic functions (Duke Math. J., vol. 13, p. 195-234). Zbl0063.08149MR17797
  15. [1946 b] A. SPITZBART, Approximation in the sense of least pth powers with a single auxiliary condition of interpolation (Bull. Amer. Math. Soc., vol. 52, p. 338-346). Zbl0061.14209MR15483
  16. [1949] J. L. WALSH and E. N. NILSON, On functions analytic in a region : approximation in the sense of least pth powers (Trans. Amer. Math. Soc., vol. 65, p. 239-258). Zbl0035.16904MR28956
  17. [1949 a] J. L. WALSH, W. E. SEWELL and H. M. ELLIOTT, On the degree of polynomial approximation to harmonic and analytic functions (Trans. Amer. Math. Soc., vol. 67, p. 381-420). Zbl0035.17102MR33920
  18. [1950] J. L. WALSH and H. M. ELLIOTT, Polynomial approximation to harmonie and analytic functions : generalized continuity conditions (Trans. Amer. Math. Soc., vol. 68, p. 183-203). Zbl0037.05401MR33921
  19. [1950 a] J. L. WALSH and H. G. RUSSELL, On simultaneous interpolation and approximation by functions analytic in a given region (Trans. Amer. Math. Soc., vol. 69, p. 416-439). Zbl0041.04102MR41212
  20. [1951] J. L. WALSH, Note on approximation by bounded analytic functions (Proc. Nat. Acad. Sc., vol. 37, p. 821-826). Zbl0044.07805MR45206
  21. [1951 a] H. M. ELLIOTT, On approximation to functions satisfying a generalized continuity condition (Trans. Amer. Math. Soc., vol. 71, p. 1-23). Zbl0043.10501MR44627
  22. [1952] J. L. WALSH, Polynomial expansions of functions defined by Cauchys integral (J. Math, pures et appl., vol. 31, p. 221-244). Zbl0049.05203MR51919
  23. [1952 a] J. L. WALSH and Philip DAVIS, Interpolation and orthonormal systems (J. Anal. math., vol. 2, p. 1-28). Zbl0049.05301MR66461
  24. [1952 b] J. L. WALSH, Degree of approximation to functions on a Jordan curve (Trans. Amer. Math. Soc., vol. 73, p. 447-458). Zbl0048.05202MR52505
  25. [1952 c] J. L. WALSH and H. M. ELLIOTT, Degree of approximation on a Jordan curve (Proc. Nat. Acad. Sc., vol. 38, p. 1058-1066). Zbl0049.05204MR53229
  26. [1952 d] Philip DAVIS, An application of doubly orthogonal functions to a problem of approximation in two regions (Trans. Amer. Math. Soc., vol. 72, p. 104-137). Zbl0046.08101MR46434
  27. [1954] J. L. WALSH and J. P. EVANS, On approximation by bounded analytic functions (Archiv. der Math., vol. 5, p. 191-196). Zbl0055.06801MR62224
  28. [1954 a] J. L. WALSH, Détermination d'une fonction analytique par ses valeurs données dans une infinité dénombrable de points (Bull. Soc. math. Belgique, p. 52-70). Zbl0065.06303MR74527
  29. [1954 b] J. L. WALSH, An interpolation problem for harmonic functions (Amer. J. Math., vol. 76, p. 259-272). Zbl0055.09003MR66510
  30. [1955] J. P. EVANS and J. L. WALSH, On interpolation to a given analytic function by analytic functions of minimum norm (Trans. Amer. Math. Soc., vol. 79, p. 158-172). Zbl0064.31502MR69274
  31. [1955 a] J. L. WALSH, Sur l'approximation par fonctions rationnelles et par fonctions holomorphes bornées (Annali di Matematica, vol. 39, p. 267-277). Zbl0066.05305MR77684
  32. [1956] J. L. WALSH, On the conformal mapping of multiply connected regions (Trans. Amer. Math. Soc., vol. 82, p. 128-146). Zbl0071.07202MR80727
  33. [1956 a] J. L. WALSH, Note on degree of approximation to analytic functions by rational functions with preassigned poles (Proc. Nat. Acad. Sc., vol. 42, p. 927 930). Zbl0072.29003MR82552
  34. [1958] J. L. WALSH, On approximation by bounded analytic functions (Trans. Amer. Math. Soc., vol. 87, p. 467-484). Zbl0080.28005MR96816
  35. [1959] J. L. WALSH, Approximation on a line segment by bounded analytic functions : Problem β (Proc. Amer. Math. Soc., vol. 10, p. 270-272). Zbl0091.06502MR107720
  36. [1959 a] J. L. WALSH, Note on least-square approximation to an analytic function by polynomials, as measured by a surface integral (Proc. Amer. Math. Soc., vol. 10, p. 273-279). Zbl0098.04902MR123725
  37. [1959 b] J. L. WALSH, Approximation by bounded analytic functions : general configurations (Proc. Amer. Math. Soc., vol. 10, p. 280-285). Zbl0091.06601MR107721
  38. [1959 c] J. L. WALSH and H. G. RUSSELL, Integrated continuity conditions and degree of approximation by polynomials or by bounded analytic functions (Trans. Amer. Math. Soc., vol. 92, p. 355 370). Zbl0098.04901MR108595
  39. [1959 d] J. L. WALSH, Note on approximation by bounded analytic functions (Problem α) (Math. Z., vol. 72, p. 47-52. Zbl0088.28101MR109893
  40. [1959 e] J. L. WALSH, Note on invariance of degree of polynomial and trigonometrie approximation under change of independent variable (Proc. Nat. Acad. Sc., vol. 45, p. 1528-1533). Zbl0095.05504MR123869
  41. [1959 f] J. L. WALSH, The analogue for maximally convergent polynomials of Jentzsch's theorem (Duke Math. J., vol. 26, p. 605-616). Zbl0091.06602
  42. [1960] J. L. WALSH, On degree of approximation by bounded harmonic functions (J. Math, pures et appl., vol. 39). Zbl0095.27703MR151625

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.