La suffisante complétude connexe. Section A : amphi-syntaxes, amphi-algèbres et sesqui-algèbres

F. Cury

Diagrammes (1993)

  • Volume: 30, page 1-122
  • ISSN: 0224-3911

How to cite

top

Cury, F.. "La suffisante complétude connexe. Section A : amphi-syntaxes, amphi-algèbres et sesqui-algèbres." Diagrammes 30 (1993): 1-122. <http://eudml.org/doc/193046>.

@article{Cury1993,
author = {Cury, F.},
journal = {Diagrammes},
keywords = {rewrite systems; sufficient connected completeness; essentially algebraic theory; syntax; monad; Kleisli category; amphi-algebras; sesqui-algebras; 2-categories; locally cartesian categories; laxification},
language = {fre},
pages = {1-122},
publisher = {Université Paris 7, Unité d'enseignement et de recherche de mathématiques},
title = {La suffisante complétude connexe. Section A : amphi-syntaxes, amphi-algèbres et sesqui-algèbres},
url = {http://eudml.org/doc/193046},
volume = {30},
year = {1993},
}

TY - JOUR
AU - Cury, F.
TI - La suffisante complétude connexe. Section A : amphi-syntaxes, amphi-algèbres et sesqui-algèbres
JO - Diagrammes
PY - 1993
PB - Université Paris 7, Unité d'enseignement et de recherche de mathématiques
VL - 30
SP - 1
EP - 122
LA - fre
KW - rewrite systems; sufficient connected completeness; essentially algebraic theory; syntax; monad; Kleisli category; amphi-algebras; sesqui-algebras; 2-categories; locally cartesian categories; laxification
UR - http://eudml.org/doc/193046
ER -

References

top
  1. [A.M.E.N.] L. Coppey et C. Lair, Algébricité, monadicité, esquissabilité et non-algébricité, Diagrammes 13, Paris, 1985. Zbl0594.18006MR817075
  2. [A.O.F.S.] F. E. J. Linton, An outline of functorial semantics, Lect. Notes in Math. 80, Springer, 1969. Zbl0181.02802MR244340
  3. [C.A.S.T.] C. Ehresmann, Catégories et structures, Dunod, Paris, 1965. Zbl0192.09803MR213410
  4. [C.L.C.A.] S. Eilenberg et G. M. Kelly, Closed categories, Proceedings of the Conference on categorical algebra (La Jolla, 1965), ed. by S. Eilenberg, D. K. Harrison, S. MacLane, H. Röhrl, Springer, 1966. Zbl0192.10604MR225841
  5. [E.S.C.C.] F. Cury, Catégories lax-localement cartésiennes et catégories localement cartésiennes : un exemple de suffisante complétude connexe de sémantiques initiales, Diagrammes 25, Paris, 1991. Zbl0815.18004MR1142466
  6. [E.T.S.A.] C. Ehresmann, Esquisses et types de structures algébriques, Bull. Instit. Polit., Iasi, XIV, 1968. Zbl0196.03102
  7. [F.S.A.T.] F. W. Lawvere, Some algebraic problems in the context of functorial semantics of algebraic theories, Lect. Notes in Math. 61, Springer, 1968. Zbl0204.33802MR231882
  8. [G.M.E.N.] F. Cury, Graphes multiplicatifs enrichis, Esquisses Math. 27, Amiens, 1978. Zbl0377.18003
  9. [L.C.L.S.] C. Lair, Lax colimites structurées, Diagrammes 20, Paris, 1988. Zbl0669.18006
  10. [L.P.L.G.] F. Ulmer, Locally α-presentable and locally α-generated categories, Lect. Notes in Math. 195, Springer, 1971. Zbl0225.18005MR292908
  11. [P.T.G.M.] L. Coppey, Quelques problèmes typiques concernant les graphes multiplicatifs, Diagrammes 3, Paris, 1980. Zbl0517.18003MR684910
  12. [S.C.C.B.] F. Cury, La suffisante complétude connexe, Section B : théorie générale, Diagrammes 31, (à paraître). Zbl0857.18005
  13. [S.C.C.C.] F. Cury, La suffisante complétude connexe, Section C : exemples, Diagrammes 32, Paris, (à paraître). Zbl0857.18007
  14. [T.A.E.P.] L. Coppey, Théories algébriques et extensions de préfaisceaux et compléments, Cah. de Top. et Géom. Diff., Vol. XIII,1 et XIII,4, Paris, 1972. Zbl0326.18005

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.