A characterization of locally -presentable categories
A duality between -ary varieties and -ary algebraic theories is proved as a direct generalization of the finitary case studied by the first author, F.W. Lawvere and J. Rosick’y. We also prove that for every uncountable cardinal , whenever -small products commute with -colimits in , then must be a -filtered category. We nevertheless introduce the concept of -sifted colimits so that morphisms between -ary varieties (defined to be -ary, regular right adjoints) are precisely the functors...
J. Rutten proved, for accessible endofunctors of Set, the dual Birkhoff’s Variety Theorem: a collection of -coalgebras is presentable by coequations ( subobjects of cofree coalgebras) iff it is closed under quotients, subcoalgebras, and coproducts. This result is now proved to hold for all endofunctors of Set provided that coequations are generalized to mean subchains of the cofree-coalgebra chain. For the concept of coequation introduced by H. Porst and the author, which is a subobject of...