Procédures optimales pour le classement des t meilleurs articles parmi n au moyen de comparaisons binaires

Milton Sobel

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1972)

  • Volume: 6, Issue: R3, page 23-68
  • ISSN: 0764-583X

How to cite

top

Sobel, Milton. "Procédures optimales pour le classement des $t$ meilleurs articles parmi $n$ au moyen de comparaisons binaires." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 6.R3 (1972): 23-68. <http://eudml.org/doc/193220>.

@article{Sobel1972,
author = {Sobel, Milton},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
language = {fre},
number = {R3},
pages = {23-68},
publisher = {Dunod},
title = {Procédures optimales pour le classement des $t$ meilleurs articles parmi $n$ au moyen de comparaisons binaires},
url = {http://eudml.org/doc/193220},
volume = {6},
year = {1972},
}

TY - JOUR
AU - Sobel, Milton
TI - Procédures optimales pour le classement des $t$ meilleurs articles parmi $n$ au moyen de comparaisons binaires
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1972
PB - Dunod
VL - 6
IS - R3
SP - 23
EP - 68
LA - fre
UR - http://eudml.org/doc/193220
ER -

References

top
  1. [1] R. C. BOSE and R. J. NELSON, A sorting problem, J. ACM, 1962, 9, 282-296. Zbl0105.32405MR145695
  2. [2] W. H. BURGE, Sorting, trees and measures of order. Informat Contr., 1958, 1, 181-197. Zbl0085.34301MR96558
  3. [3] L. CARROLL, Lawn tennis tournaments. (From The Complete Works of Lewis Carroll) 1883, N. Y. Modem Library, 1947 édition. 
  4. [4] Y. CESARI, Questionnaire, codage et tris. Thèse, Faculté des Sciences de Paris, 1967. 
  5. [5] H. A. DAVID, Tournaments and paired comparisons. Biometrika, 1959, 46, 139-149. Zbl0087.14901MR102445
  6. [6] H. A. DAVID, The Method of Paired Comparisons, 1963, Hofner Pub. Co., New York. Zbl0665.62075MR174105
  7. [7] F. DUBAIL, Algorithmes de questionnaires réalisables, optimaux au sens de différents critères. Thèse, Univ. de Lyon, 1967. 
  8. [8] L. R. Jr FORD and S. M. JOHNSON, A tournament problem. Amer. Math. Monthly, 1959, 66, 387-389. Zbl0092.01303MR103159
  9. [9] W. A. GLENN, A comparison of the effectiveness of tournaments. Biometrika, 1960, 47, 253-262. Zbl0094.15302MR121927
  10. [10] A. HADIAN, Optimality properties of various procedures for ranking n different numbers using only binary comparisons. Technical Report n°. 117, Departement of Statistics, Univ. of Minnesota, 1969. 
  11. [11] T. N. HIBBARD, Some combinatorial properties of certain trees with application to searching and sorting. J. ACM, 1962, 9, 13-28. Zbl0116.09410MR152155
  12. [12] D. A. HUFFMAN, A method for the Construction of Minimum redundancy codes. Proc. IRE, 1952, 9, 1098-1101. Zbl0137.13605
  13. [13] K. E. IVERSON, A Programming Language. John Wiley and Sons, Inc., New York, 1962. Zbl0101.34503MR143354
  14. [14] S. S. KISLITSYNE, On a bound for the smallest average number of pairwise comparisons necessary for a complete ordering of N objects with different weights (Russian). Vestnik Leningrad Univ. (Series on Math., Mech. and Astron.) 1962, 18, n°. 1, 162-163. 
  15. [15] S. S. KISLITSYNE, A sharpening of the bound on the smallest average number of comparisons necessary for the complete ordering of a finite set (Russian). Vestnik Leningrad Univ. (Series on Math., Mech. and Astron.), 1963, 19, n° 4, 143-145 (MR 28, n°. 41). 
  16. [16] R. J. MAURICE, Selection of the population with the largest mean when comparisons can be made only in pairs. Biometrika, 1958, 45, 581-586. Zbl0085.13701
  17. [17] C. PICARD, Théorie des Questionnaires. Gauthier-Villars, Paris, 1965 (MR 33, n° 7186). Voir aussi : Graphes et Questionnaires, Gauthier-Villars, Paris, 1972. Zbl0128.39002MR199036
  18. [18] M. SANDELIUS, On an Optimal Search Procedure. Amer. Math. Monthly, 1961, 68, 133-134. Zbl0111.33403MR127425
  19. [19] J. SCHREIER, On tournament elimination systems (Polish). Mathesis Polska, 1932, 7, 154-160. JFM58.1016.01
  20. [20] J. SLUPECKI, On the system S of tournaments. Colloq. Math., 1949-51, 2, 286-290. Zbl0045.15204
  21. [21] M. SOBEL, Optimal Group-testing. Proceeedings of the Colloquium held in Debrecen on Information Theory 1967publiées par l'académie des Sciences de Hongrie, 441-448. Zbl0206.20401
  22. [22] M. SOBEL and P. A. GROLL, Group-testing to eliminate efficiently all defectives in a binomial sample. Bell Syst. Techn. J., 1959, 38, 1179-1252. MR107341
  23. [23] H. STEINHAUS, Mathematical Snapshots, 1950 and 1960, Oxford Univ. Press, New York (see pp. 37-40 in the 1950 edition). Zbl0041.27502MR36005
  24. [24] H. STEINHAUS, One Hundred Problems in Elementary Mathematics, 1958. (See Problems 52 and 85 in the 1963 edition, Pergamon Press, London.) Zbl0116.24102MR90552
  25. [25] H. STEINHAUS, Some remarks about tournaments. Calcutta Math. Soc. Golden Jubilee Comm., 1959, Vol. Part II, 323-327 (MR 27, n°. 4770). Zbl0121.15402MR154826

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.