Some asymptotic error estimates for finite element approximation of minimal surfaces

Rolf Rannacher

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1977)

  • Volume: 11, Issue: 2, page 181-196
  • ISSN: 0764-583X

How to cite

top

Rannacher, Rolf. "Some asymptotic error estimates for finite element approximation of minimal surfaces." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 11.2 (1977): 181-196. <http://eudml.org/doc/193295>.

@article{Rannacher1977,
author = {Rannacher, Rolf},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
language = {eng},
number = {2},
pages = {181-196},
publisher = {Dunod},
title = {Some asymptotic error estimates for finite element approximation of minimal surfaces},
url = {http://eudml.org/doc/193295},
volume = {11},
year = {1977},
}

TY - JOUR
AU - Rannacher, Rolf
TI - Some asymptotic error estimates for finite element approximation of minimal surfaces
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1977
PB - Dunod
VL - 11
IS - 2
SP - 181
EP - 196
LA - eng
UR - http://eudml.org/doc/193295
ER -

References

top
  1. 1. J. H. BRAMBLE, S. R. HILBERT, Bounds on a class of linear functionals with applications to Hermite interpolation, Numer. Math., Vol. 16, 1971, pp. 362-369. Zbl0214.41405MR290524
  2. 2. J. FREHSEEine a-priori-Abschätzung zur Methode der finiten Elemente in der numerischen Variationsrechnung.In : Numerische Behandlung von Variations-und Steuerungsproblem, Tagungsband, Bonn. Math. Schr., Vol. 77, 1975, pp. 115-126. Zbl0316.65027MR405884
  3. 3. J. FREHSE, Eine gleichmaige asymptotische Fehlerabschätzung zur Methode der finiten Elemente bei quasilinearen Randwertproblemen. In : Theory of Nonlinear Operators. Constructive Aspects, Tagungsband der Akademie der Wissenschaften, Berlin (DDR), 1976. Zbl0368.65054
  4. 4 J FREHSE, R RANNACHER, Eine L1-Fehlerabschatzung fur diskrete Grundlosungen in der Methode der finiten Elemente In Finite Elemente, Tagungsband, Bonn Math Schr, Vol 89, 1976, pp 92-114 Zbl0359.65093
  5. 5 C JOHNSON, V THOMEE, Error estimates for a finite element approximation of a minimal surface, Math Comp , Vol 29, 1975, pp 343-349 Zbl0302.65086MR400741
  6. 6 H D MITTELMANN, On pointwise estimates for a finite element solution of nonlinear boundary value problems To appear Zbl0367.65059MR445865
  7. 7 C B MORREY, Multiple intégrals in the calculus of variations Springer Berlm-Heidelberg-New York, 1966 Zbl0142.38701MR202511
  8. 8 F NATTERER, Uber die punktweise Konvergenz finiter Elemente Numer Math,Vol 25 1975 pp 67-77 Zbl0331.65073MR474884
  9. 9 J NECAS, Les méthodes directes en théorie des équations elliptiques Masson, Paris, 1967 
  10. 10 J NITSCHE, Lineare Spline-Funktionen und die Methode von Ritz fur elliptische Randweirtaufgaben Arch Rational Mech Anal, Vol 36, 1970, pp 348-355 Zbl0192.44503MR255043
  11. 11 J NITSCHE, L -convergence of finite element approximation 2 Conference on Finite Eléments, Rennes (France), 1975 MR568857
  12. 12 R RANNACHER, Zur L -Konvergenz linearer finiter Elemente Math Z, Vol 149, 1976 pp 69-77 Zbl0321.65055MR488859
  13. 13 R SCOTT, Optimal Lx-estimates Jot the finite element method on irregular meshes Math Comp, Vol 30, 1976 Zbl0349.65060MR436617

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.