Bounds for a Class of Linear Functionals with Applications to Hermite Interpolation.
Numerische Mathematik (1970/71)
- Volume: 16, page 362-369
- ISSN: 0029-599X; 0945-3245/e
Access Full Article
topHow to cite
topBRAMBLE, J.H., and HILBERT, S.R.. "Bounds for a Class of Linear Functionals with Applications to Hermite Interpolation.." Numerische Mathematik 16 (1970/71): 362-369. <http://eudml.org/doc/132041>.
@article{BRAMBLE1970/71,
author = {BRAMBLE, J.H., HILBERT, S.R.},
journal = {Numerische Mathematik},
pages = {362-369},
title = {Bounds for a Class of Linear Functionals with Applications to Hermite Interpolation.},
url = {http://eudml.org/doc/132041},
volume = {16},
year = {1970/71},
}
TY - JOUR
AU - BRAMBLE, J.H.
AU - HILBERT, S.R.
TI - Bounds for a Class of Linear Functionals with Applications to Hermite Interpolation.
JO - Numerische Mathematik
PY - 1970/71
VL - 16
SP - 362
EP - 369
UR - http://eudml.org/doc/132041
ER -
Citations in EuDML Documents
top- Pierre Lesaint, Milos Zlamal, Convergence de l'élément de Wilson en élasticité linéaire Cas des quadrilatères quelconques
- P. Lesaint, P. A. Raviart, Résolution numérique de l'équation de continuité par une méthode du type éléments finis
- Kinji Baba, Masahisa Tabata, On a conservation upwind finite element scheme for convective diffusion equations
- L. B. Wahlbin, Maximum norm error estimates in the finite element method with isoparametric quadratic elements and numerical integration
- Manfred Dobrowolski, Convergence of finite element approximation to quasilinear initial boundary value problems
- Vladimír Janovský, Nonconform finite element procedure for solving of the simply supported plate problem
- Mohamed El Hatri, Estimation d'erreur optimale et de type superconvergence de la méthode des éléments finis pour un problème aux limites, dégénéré
- Pierre Lesaint, Milos Zlamal, Superconvergence of the gradient of finite element solutions
- Boško Jovanović, Lubin Vulkov, Analysis and numerical approximation of a parabolic-hyperbolic transmission problem
- Vladimír Janovský, Petr Procházka, Contact problem of two elastic bodies. II
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.