Caractérisations de la convergence locale de la méthode des approximations successives

Michel Cosnard

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1977)

  • Volume: 11, Issue: 3, page 225-240
  • ISSN: 0764-583X

How to cite

top

Cosnard, Michel. "Caractérisations de la convergence locale de la méthode des approximations successives." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 11.3 (1977): 225-240. <http://eudml.org/doc/193298>.

@article{Cosnard1977,
author = {Cosnard, Michel},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
language = {fre},
number = {3},
pages = {225-240},
publisher = {Dunod},
title = {Caractérisations de la convergence locale de la méthode des approximations successives},
url = {http://eudml.org/doc/193298},
volume = {11},
year = {1977},
}

TY - JOUR
AU - Cosnard, Michel
TI - Caractérisations de la convergence locale de la méthode des approximations successives
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1977
PB - Dunod
VL - 11
IS - 3
SP - 225
EP - 240
LA - fre
UR - http://eudml.org/doc/193298
ER -

References

top
  1. 1. S. BANACH, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales (Thèse, Université de Luow, 1920), Fund, Math. 3, 1922, p. 133-181. Zbl48.0201.01JFM48.0201.01
  2. 2. V. V. BASHUROV and V. N. OGIBIN, Conditions for the convergence of iterative processes on the real axis, USSR Comp. Math. and Math. Phys. 6, 5, 1966, p. 178-184. Zbl0171.35501
  3. 3. G. CHOQUET, Cours d'Analyse, Tome II, Topologie, Masson et Cie. Zbl0169.53801
  4. 4. M. Y. COSNARD, Une condition nécessaire et suffisante de convergence locale de la méthode des approximations successives dans R, Colloque d'Analyse Numérique, Port Bail, 1976. 
  5. 5. M. Y. COSNARD, Sur les traces du théorème de Banach : un tour d'horizon des résultats de base sur les problèmes de points fixes, R. R. n° 44, Mathématiques Appliquées, Grenoble, 1976. 
  6. 6. J. B. DIAZ and F. T. METCALF, On the set of subsequential limit points of successive approximation. Trans. A.M.S. 135, 1969, p. 459-485. Zbl0174.25904MR234327
  7. 7. M. EDELSTEIN, On non expansive mappings. Proc. A.M.S. 15, 1964, p. 689-695. Zbl0124.16004
  8. 8. F. T. METCALF and T. D. ROGERS, The cluster set of sequences of successive approximations, J. Math. Anal. and Applic. 31, 1970, p. 206-212. Zbl0203.14703MR264147
  9. 9. A. OSTROWSKI, Solutions of equations and systems of equations, 2nd Ed., Academic Press, New York, 1966. Zbl0222.65070MR216746
  10. 10. A. N. SARKOVSKI, A classification of fixed points, Am. Math. Soc. Trans. (2), 97, 1970. Zbl0217.48403
  11. 11. R. S. STEPLEMAN, A characterization of local convergence for fixed point iterations in R, Siam, J. Numer. Anal., 12.6, 1975, p. 887-894. Zbl0319.65037MR421071

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.