Solutions stables d'un problème simplifié de coque élastique

J.-C. Paumier

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1978)

  • Volume: 12, Issue: 3, page 283-295
  • ISSN: 0764-583X

How to cite

top

Paumier, J.-C.. "Solutions stables d'un problème simplifié de coque élastique." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 12.3 (1978): 283-295. <http://eudml.org/doc/193324>.

@article{Paumier1978,
author = {Paumier, J.-C.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Stable Solutions; Finite Deflections; Finite Element; Circular Cylindrical Shell Segment; Displacement Functions; Theorem of Newton- Kantorovich},
language = {fre},
number = {3},
pages = {283-295},
publisher = {Dunod},
title = {Solutions stables d'un problème simplifié de coque élastique},
url = {http://eudml.org/doc/193324},
volume = {12},
year = {1978},
}

TY - JOUR
AU - Paumier, J.-C.
TI - Solutions stables d'un problème simplifié de coque élastique
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1978
PB - Dunod
VL - 12
IS - 3
SP - 283
EP - 295
LA - fre
KW - Stable Solutions; Finite Deflections; Finite Element; Circular Cylindrical Shell Segment; Displacement Functions; Theorem of Newton- Kantorovich
UR - http://eudml.org/doc/193324
ER -

References

top
  1. 1 J -C PAUMIERAnalyse numérique d'un problème de coque élastique mince en théories lineaire et non lineaire, Thèse de 3e cycle, Université de Pans-VI, 1977, Stable Solutions to a Shell Problem (a paraître dans Computer Methods in Applied Mechanics and Engineering) 
  2. 2 W T KOITER, On the Nonlinear Theory of Thin Elastic shells, Proc Kon Ned Akad Wetensch , vol B 69, 1966, p 1-54 MR192706
  3. 3 P ROUGEE, Equilibre des coques élastiques minces inhomogènes en théorie non linéaire, Thèse, Université de Paris 1969 
  4. 4 P G CIARLET, Numerical Analysis of the Finite Element Method, Séminaire de Mathématiques supérieures Université de Montreal 16 juin-11 juillet 1975 Zbl0363.65083MR495010
  5. 5 L SCHWARTZTheorie des Distributions1966, Hermann Paris Zbl0149.09501MR209834
  6. 6 P G CIARLET et P A RAVIART, General Lagrange and Hermite Interpolation in Rn with Applications to Finite Element methods, Arch Rat Mech Anal , vol 46, n° 3, 1972, p 177-189 Zbl0243.41004MR336957
  7. 7 J M ORTEGAThe Newton Kantorovitch Theorem, Amer Math Monthly, tome75, 1968, p 658-660 Zbl0183.43004MR231218

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.