Splines and pseudo-inverses

F. J. Delvos

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1978)

  • Volume: 12, Issue: 4, page 313-324
  • ISSN: 0764-583X

How to cite

top

Delvos, F. J.. "Splines and pseudo-inverses." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 12.4 (1978): 313-324. <http://eudml.org/doc/193326>.

@article{Delvos1978,
author = {Delvos, F. J.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Tensor Product Splines; Interpolating Splines of Minimum Norm; Pseudoinverse of Minamide and Nakamura; Golomb-Weinberger-Sard},
language = {eng},
number = {4},
pages = {313-324},
publisher = {Dunod},
title = {Splines and pseudo-inverses},
url = {http://eudml.org/doc/193326},
volume = {12},
year = {1978},
}

TY - JOUR
AU - Delvos, F. J.
TI - Splines and pseudo-inverses
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1978
PB - Dunod
VL - 12
IS - 4
SP - 313
EP - 324
LA - eng
KW - Tensor Product Splines; Interpolating Splines of Minimum Norm; Pseudoinverse of Minamide and Nakamura; Golomb-Weinberger-Sard
UR - http://eudml.org/doc/193326
ER -

References

top
  1. 1. J. M. BEREZANSKIJ, Expansions in Eigenfunctions of SelfadjointOperator, ,Amer Math. Soc, Providence, R. I., 1968. Zbl0157.16601
  2. 2. F. J. DELVOS and H. POSDORF, On Optimal Tensor Product Approximation, J. Approximation Theory, Vol. 18, 1976,pp.99-107. Zbl0442.41002MR438012
  3. 3. F. J. DELVOS and K. H. SCHLOSSER, Das Tensorprodukt-Schema von Spline Systemen in Spline-Funktionen K. Böhmer, G. Meinardus, W. Schempp, Mannheim, Wien-Ziirich, Bibliographisches Institut, 1974. Zbl0295.41009MR412679
  4. 4. C. A. DESOER and B. H. WHALEN, A note on Pseudo-inverses, J. Soc. Industr. Math,,Vol. 11, 1963, pp.442-447. Zbl0123.09603MR156199
  5. 5. T. N. E. GREVILLE, Note on Fitting Functions ofSeveral Variables, J. Soc. Industr.Appl. Math., Vol. 9, 1961, pp. 109-115. Zbl0168.14902MR129112
  6. 6. F. J. HALL, Generalized Inverses of a Bordered Matrix of Operators, S.I.A.M .J. Appl. Math., Vol. 29, 1975 , pp. 152-163. Zbl0324.47007MR372643
  7. 7. W. HAUSSMANN, On Multivariate Spline Systems, . Approximation Theory, Vol.11, 1974, pp.285-305. Zbl0292.41009MR358153
  8. 8. W. HAUSSMANN and H. J. MÜNCH, On the Construction of Multivariate Spline Systems in Approximation Theory, G. G. Lorentz, New York, London, Academic Press, 1973, pp.337-378. Zbl0334.41005MR333529
  9. 9. P. L. LAURENT, Approximation et optimisation, Paris, Hermann, 1972. Zbl0238.90058MR467080
  10. 10. N. MINAMIDE and K. NAKAMURA, A Restricted Pseudo-Inverse and its Application to Constrained minima, S.I.A.M. J. Appl. Math., Vol. 19, 1970 ,pp 167-177. Zbl0299.15003MR268692
  11. 11. W. PETRYSHYN, On Generalized Inverses and on the Uniform Convergence of (I-ßK)n with Application to Itérative Methods, J. Math. Anal, and Appl., Vol.18, 1967 pp. 417-439. Zbl0189.47502MR208381
  12. 12. A. SARD, Optimal Approximation, J. Funct. Anal., Vol. 1, 1967, pp. 222-244. Zbl0158.13601MR219967

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.