Convergence of approximate splines via pseudo-inverses

Franz-Jürgen Delvos; Walter Schempp

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1987)

  • Volume: 21, Issue: 2, page 261-267
  • ISSN: 0764-583X

How to cite

top

Delvos, Franz-Jürgen, and Schempp, Walter. "Convergence of approximate splines via pseudo-inverses." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 21.2 (1987): 261-267. <http://eudml.org/doc/193502>.

@article{Delvos1987,
author = {Delvos, Franz-Jürgen, Schempp, Walter},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {saddle point spline; Babuška-Brezzi condition; Hilbert spaces; pseudoinverses; finite element theory},
language = {eng},
number = {2},
pages = {261-267},
publisher = {Dunod},
title = {Convergence of approximate splines via pseudo-inverses},
url = {http://eudml.org/doc/193502},
volume = {21},
year = {1987},
}

TY - JOUR
AU - Delvos, Franz-Jürgen
AU - Schempp, Walter
TI - Convergence of approximate splines via pseudo-inverses
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1987
PB - Dunod
VL - 21
IS - 2
SP - 261
EP - 267
LA - eng
KW - saddle point spline; Babuška-Brezzi condition; Hilbert spaces; pseudoinverses; finite element theory
UR - http://eudml.org/doc/193502
ER -

References

top
  1. [1] R. E. CHANG, The generalized inverse and interpolation theory, in « Recent Applications of Generalized inverses » (S. L. Campbell, Ed.), Pitman, New York, 1983. Zbl0505.41004MR666728
  2. [2] F.-J. DELVOS, Splines and pseudo-inverses, RAIRO Anal. Numer. 12 (1978), 313-324. Zbl0393.65022MR519015
  3. [3] F.-J. DELVOS, Pseudoinversen und Splines in Hilberträumen, Habilitationsschrift, Universität Siegen 1979. Zbl0463.41024
  4. [4] F.-J. DELVOS and W. SCHEMPP, Optimal approximation and the method of least squares, J. Approx. Theory 33 (1981), 214-223. Zbl0445.41008MR647848
  5. [5] C. W. GROETSCH, Generalized inverses and generalized splines, Numer. Funct.Optim. 2 (1980), 93-97. Zbl0456.47003MR580385
  6. [6] S. IZUMINO, Convergence of generalized inverses and spline projectors, J.Approx. Theory 38 (1983), 269-278. Zbl0519.41016MR705545
  7. [7] P. LAURENT, Approximation et optimisation, Paris, Herrmann 1972. Zbl0238.90058
  8. [8] I. J. SCHOENBERG, Splines as limits of polynomials, Linear Algebra and itsApplications 52/53(1983), 617-628. Zbl0517.41004MR709376
  9. [9] M. TASCHE, A unified approach to interpolation methods, J. Intégral Equations 4(1982), 55-75. Zbl0487.41005MR640536

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.