High order accurate two-step approximations for hyperbolic equations
Garth A. Baker; Vassilios A. Dougalis; Steven M. Serbin
- Volume: 13, Issue: 3, page 201-226
- ISSN: 0764-583X
Access Full Article
topHow to cite
topBaker, Garth A., Dougalis, Vassilios A., and Serbin, Steven M.. "High order accurate two-step approximations for hyperbolic equations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 13.3 (1979): 201-226. <http://eudml.org/doc/193341>.
@article{Baker1979,
author = {Baker, Garth A., Dougalis, Vassilios A., Serbin, Steven M.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {two-step fully discrete approximation methods; initial-boundary value problem for second-order hyperbolic equations; optimal order rate of convergence; approximations to the solution},
language = {eng},
number = {3},
pages = {201-226},
publisher = {Dunod},
title = {High order accurate two-step approximations for hyperbolic equations},
url = {http://eudml.org/doc/193341},
volume = {13},
year = {1979},
}
TY - JOUR
AU - Baker, Garth A.
AU - Dougalis, Vassilios A.
AU - Serbin, Steven M.
TI - High order accurate two-step approximations for hyperbolic equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1979
PB - Dunod
VL - 13
IS - 3
SP - 201
EP - 226
LA - eng
KW - two-step fully discrete approximation methods; initial-boundary value problem for second-order hyperbolic equations; optimal order rate of convergence; approximations to the solution
UR - http://eudml.org/doc/193341
ER -
References
top- 1. G. A. BAKER and J. H. BRAMBLE, Semidiscrete and Single Step Fully Discrete Approximations for Second Order Hyperbolic Equations, Rapport Interne No. 22, Centre de Mathématiques appliquées, École polytechnique, Palaiseau, 1977. Zbl0405.65057
- 2. G. A. BAKER and V. A. DOUGALIS, On the L x -Convergence of Approximations for Hyperbolic Equations (to appear in Math. Comp.). Zbl0454.65078MR559193
- 3. G. A. BAKER, V. A. DOUGALIS and S. M. SERBIN, An Approximation Theorem for Second-Order Evolution Equations (to appear in Numer. Math.). Zbl0445.65075MR585242
- 4. J. H. BRAMBLE, A. H. SCHATZ, V. THOMÉE and L. B. WAHLBIN, Some Convergence Estimates for Semidiscrete Galerkin Type Approximations for Parabolic Equations, S.I.A.M., J. Numer. Anal., Vol. 14, 1977, pp. 218-241. Zbl0364.65084MR448926
- 5. M. CROUZEIX, Sur l'approximation des équations différentielles opérationnelles linéaires par des méthodes de Runge-Kutta, Thèse, Université Paris-VI, 1975.
- 6. V. A. DOUGALIS, Multistep Galerkin Methods for Hyperbolic Equations, Math.Comp., Vol. 33, 1979, pp, 563-584. Zbl0417.65057MR521277
- 7. T. DUPONT, L2-Estimates for Galerkin Methods for Second-Order Hyperbolic Equations, S.I.A.M., J. Numer. Anal., Vol. 1973, pp.880-889. Zbl0239.65087MR349045
- 8. E. GEKELER, Linear Multistep Methods and Galerkin Procedures for Initial-Boundary Value Problems, S.I.A.M., J. Numer. Anal., Vol. 13, 1976, pp.536-548. Zbl0335.65042MR431749
- 9. E. GEKELER, Galerkin-Runge-Kutta Methods and Hyperbolic Initial Boundary Value Problems, Computing, Vol. 18, 1977, pp.79-88. Zbl0348.65087MR438739
- 10. S. M. SERBIN, Rational Approximations of Trigonométric Matrices with Applications to Second-Order Systems of Differential Equations, Appl. Math, and Computation, Vol. 5, 1979, pp. 75-92. Zbl0408.65047MR516304
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.