Application du théorème de Sylvester à la localisation des valeurs propres de A X = λ B X dans le cas symétrique

Yves Haugazeau

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1980)

  • Volume: 14, Issue: 1, page 25-41
  • ISSN: 0764-583X

How to cite

top

Haugazeau, Yves. "Application du théorème de Sylvester à la localisation des valeurs propres de $AX = \lambda BX$ dans le cas symétrique." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 14.1 (1980): 25-41. <http://eudml.org/doc/193349>.

@article{Haugazeau1980,
author = {Haugazeau, Yves},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Sylvester's theorem; localization of eigenvalues; Sturm's sequences; algorithm},
language = {fre},
number = {1},
pages = {25-41},
publisher = {Dunod},
title = {Application du théorème de Sylvester à la localisation des valeurs propres de $AX = \lambda BX$ dans le cas symétrique},
url = {http://eudml.org/doc/193349},
volume = {14},
year = {1980},
}

TY - JOUR
AU - Haugazeau, Yves
TI - Application du théorème de Sylvester à la localisation des valeurs propres de $AX = \lambda BX$ dans le cas symétrique
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1980
PB - Dunod
VL - 14
IS - 1
SP - 25
EP - 41
LA - fre
KW - Sylvester's theorem; localization of eigenvalues; Sturm's sequences; algorithm
UR - http://eudml.org/doc/193349
ER -

References

top
  1. 1 R COURANT et D HILBERT, Methods of Mathematical Physics, vol I, chap VI, Interscience, 1953 Zbl0051.28802MR65391
  2. 2 A GEORGE, Nested Dissection of a Regular Finite Element Mesh, S I A M J Numer Anal vol 10 n°2, 1973, p 345-363 Zbl0259.65087MR388756
  3. 3 I GLAZMAN et Y LIUBITCH, Analyse lineaire dans les espaces de dimensions finies, Mir, Moscou 1972, p 161-162 Zbl0243.15002MR354716
  4. 4 A LENTIN et J RIVAUD, Leçons d'algèbre moderne Vuibert, Pans, 1961, p 382-383 Zbl0100.01601
  5. 5 R J LIPTON et R E TARJAN, A Separator Theorem for Planar Graphs Conference onTheoretical Computer Science, Umversity of Waterloo, 15-17août 1977 Zbl0417.05023MR505868
  6. 6 R S MARTIN, G PETERS et J H WILKINSONSymmetrie Décomposition of a Positive Definite Matrix, Num Math , vol 7, 1965 p 362-383 Zbl0135.37402MR1553945
  7. 7 G PETERS et J H WILKINSON, Eigenvalues of A x = λ B x with band symmetric A and B ,Comp J , vol 12, 1969 p 398-404 Zbl0185.40204MR253543

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.