A basic decomposition result related to the notion of the rank of a matrix and applications.
We give a simple direct proof of the polar decomposition for separated linear maps in pseudo-Euclidean geometry.
This paper presents several new results on the inversion of full normal rank nonsquare polynomial matrices. New analytical right/left inverses of polynomial matrices are introduced, including the so-called τ-inverses, σ-inverses and, in particular, S-inverses, the latter providing the most general tool for the design of various polynomial matrix inverses. The applicationoriented problem of selecting stable inverses is also solved. Applications in inverse-model control, in particular robust minimum...
An algorithm is given to decompose an automorphism of a finite vector space over ℤ₂ into a product of transvections. The procedure uses partitions of the indexing set of a redundant base. With respect to tents, i.e. finite ℤ₂-representations generated by a redundant base, this is a decomposition into base changes.
In this paper, an approach based on matrix polynomials is introduced for solving linear systems of partial differential equations. The main feature of the proposed method is the computation of the Smith canonical form of the assigned matrix polynomial to the linear system of PDEs, which leads to a reduced system. It will be shown that the reduced one is an independent system of PDEs having only one unknown in each equation. A comparison of the results for several test problems reveals that the method...