A finite element solution of the monlinear heat equation

Miloš Zlamal

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1980)

  • Volume: 14, Issue: 2, page 203-216
  • ISSN: 0764-583X

How to cite

top

Zlamal, Miloš. "A finite element solution of the monlinear heat equation." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 14.2 (1980): 203-216. <http://eudml.org/doc/193358>.

@article{Zlamal1980,
author = {Zlamal, Miloš},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {finite element method; multidimensional Stefan problems; nonlinear heat equation; Galerkin method; implicit Euler method; nonlinear Gauss-Seidel iterative method; initial-boundary value problem; Kirchhoff type transformation},
language = {eng},
number = {2},
pages = {203-216},
publisher = {Dunod},
title = {A finite element solution of the monlinear heat equation},
url = {http://eudml.org/doc/193358},
volume = {14},
year = {1980},
}

TY - JOUR
AU - Zlamal, Miloš
TI - A finite element solution of the monlinear heat equation
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1980
PB - Dunod
VL - 14
IS - 2
SP - 203
EP - 216
LA - eng
KW - finite element method; multidimensional Stefan problems; nonlinear heat equation; Galerkin method; implicit Euler method; nonlinear Gauss-Seidel iterative method; initial-boundary value problem; Kirchhoff type transformation
UR - http://eudml.org/doc/193358
ER -

References

top
  1. 1 L CERMAK and M ZLAMAL, Transformation of Dependent Variables and the Finite Element Solution of Non-Linear Evolution Equations, Int Y Numer Meth Eng , Vol 15 1980 pp 11-40. Zbl0444.65078MR554438
  2. 2 P G CIARLIT, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam New York, Oxford, 1978. Zbl0383.65058MR520174
  3. 3 J DOUGLAS and T DUPONT, Galerkin Methods for Parabolic Equations, SIAM J Numer Anal, Vol 7, 1970, pp 575-626. Zbl0224.35048MR277126
  4. 4 J NITSCHE, L -Convergence of Finite Element Approximations, Mathematical Aspects of the Finite Element Method, Rome, 1975, pp 261-274, Springer-Verlag, Berlin, Heidelberg, New York, 1977. Zbl0362.65088MR488848
  5. 5 J M ORTEGA and W C RHEINBOLDT, Iterative Solution of Non-Linear Equations in Several Variables, Academic Press, New York, London, 1970. Zbl0241.65046MR273810
  6. 6 R SCOTT, Optimal L Estimates for the Finite Element Method on Irregular Meshes, Math Comp,Vol 30, No 136, 1976, pp 681-697. Zbl0349.65060MR436617

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.