A finite element solution of the monlinear heat equation
- Volume: 14, Issue: 2, page 203-216
- ISSN: 0764-583X
Access Full Article
topHow to cite
topZlamal, Miloš. "A finite element solution of the monlinear heat equation." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 14.2 (1980): 203-216. <http://eudml.org/doc/193358>.
@article{Zlamal1980,
author = {Zlamal, Miloš},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {finite element method; multidimensional Stefan problems; nonlinear heat equation; Galerkin method; implicit Euler method; nonlinear Gauss-Seidel iterative method; initial-boundary value problem; Kirchhoff type transformation},
language = {eng},
number = {2},
pages = {203-216},
publisher = {Dunod},
title = {A finite element solution of the monlinear heat equation},
url = {http://eudml.org/doc/193358},
volume = {14},
year = {1980},
}
TY - JOUR
AU - Zlamal, Miloš
TI - A finite element solution of the monlinear heat equation
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1980
PB - Dunod
VL - 14
IS - 2
SP - 203
EP - 216
LA - eng
KW - finite element method; multidimensional Stefan problems; nonlinear heat equation; Galerkin method; implicit Euler method; nonlinear Gauss-Seidel iterative method; initial-boundary value problem; Kirchhoff type transformation
UR - http://eudml.org/doc/193358
ER -
References
top- 1 L CERMAK and M ZLAMAL, Transformation of Dependent Variables and the Finite Element Solution of Non-Linear Evolution Equations, Int Y Numer Meth Eng , Vol 15 1980 pp 11-40. Zbl0444.65078MR554438
- 2 P G CIARLIT, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam New York, Oxford, 1978. Zbl0383.65058MR520174
- 3 J DOUGLAS and T DUPONT, Galerkin Methods for Parabolic Equations, SIAM J Numer Anal, Vol 7, 1970, pp 575-626. Zbl0224.35048MR277126
- 4 J NITSCHE, -Convergence of Finite Element Approximations, Mathematical Aspects of the Finite Element Method, Rome, 1975, pp 261-274, Springer-Verlag, Berlin, Heidelberg, New York, 1977. Zbl0362.65088MR488848
- 5 J M ORTEGA and W C RHEINBOLDT, Iterative Solution of Non-Linear Equations in Several Variables, Academic Press, New York, London, 1970. Zbl0241.65046MR273810
- 6 R SCOTT, Optimal Estimates for the Finite Element Method on Irregular Meshes, Math Comp,Vol 30, No 136, 1976, pp 681-697. Zbl0349.65060MR436617
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.