Page 1 Next

Displaying 1 – 20 of 597

Showing per page

𝐴 - 𝑃𝑂𝑆𝑇𝐸𝑅𝐼𝑂𝑅𝐼 error estimates for linear exterior problems 𝑉𝐼𝐴 mixed-FEM and DtN mappings

Mauricio A. Barrientos, Gabriel N. Gatica, Matthias Maischak (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper we combine the dual-mixed finite element method with a Dirichlet-to-Neumann mapping (given in terms of a boundary integral operator) to solve linear exterior transmission problems in the plane. As a model we consider a second order elliptic equation in divergence form coupled with the Laplace equation in the exterior unbounded region. We show that the resulting mixed variational formulation and an associated discrete scheme using Raviart-Thomas spaces are well posed, and derive the...

3D domain decomposition method coupling conforming and nonconforming finite elements

Abdellatif Agouzal, Laurence Lamoulie, Jean-Marie Thomas (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper deals with the solution of problems involving partial differential equations in  3 . For three dimensional case, methods are useful if they require neither domain boundary regularity nor regularity for the exact solution of the problem. A new domain decomposition method is therefore presented which uses low degree finite elements. The numerical approximation of the solution is easy, and optimal error bounds are obtained according to suitable norms.

A certified reduced basis method for parametrized elliptic optimal control problems

Mark Kärcher, Martin A. Grepl (2014)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we employ the reduced basis method as a surrogate model for the solution of linear-quadratic optimal control problems governed by parametrized elliptic partial differential equations. We present a posteriori error estimation and dual procedures that provide rigorous bounds for the error in several quantities of interest: the optimal control, the cost functional, and general linear output functionals of the control, state, and adjoint variables. We show that, based on the assumption...

A comparison of some a posteriori error estimates for fourth order problems

Segeth, Karel (2010)

Programs and Algorithms of Numerical Mathematics

A lot of papers and books analyze analytical a posteriori error estimates from the point of view of robustness, guaranteed upper bounds, global efficiency, etc. At the same time, adaptive finite element methods have acquired the principal position among algorithms for solving differential problems in many physical and technical applications. In this survey contribution, we present and compare, from the viewpoint of adaptive computation, several recently published error estimation procedures for...

A Dual Mixed Formulation for Non-isothermal Oldroyd–Stokes Problem

M. Farhloul, A. Zine (2011)

Mathematical Modelling of Natural Phenomena

We propose a mixed formulation for non-isothermal Oldroyd–Stokes problem where the both extra stress and the heat flux’s vector are considered. Based on such a formulation, a dual mixed finite element is constructed and analyzed. This finite element method enables us to obtain precise approximations of the dual variable which are, for the non-isothermal fluid flow problems, the viscous and polymeric components of the extra-stress tensor, as well...

A family of discontinuous Galerkin mixed methods for nearly and perfectly incompressible elasticity∗

Yongxing Shen, Adrian J. Lew (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

We introduce a family of mixed discontinuous Galerkin (DG) finite element methods for nearly and perfectly incompressible linear elasticity. These mixed methods allow the choice of polynomials of any order k ≥ 1 for the approximation of the displacement field, and of order k or k − 1 for the pressure space, and are stable for any positive value of the stabilization parameter. We prove the optimal convergence of the displacement and stress fields...

A family of discontinuous Galerkin mixed methods for nearly and perfectly incompressible elasticity

Yongxing Shen, Adrian J. Lew (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We introduce a family of mixed discontinuous Galerkin (DG) finite element methods for nearly and perfectly incompressible linear elasticity. These mixed methods allow the choice of polynomials of any order k ≥ 1 for the approximation of the displacement field, and of order k or k − 1 for the pressure space, and are stable for any positive value of the stabilization parameter. We prove the optimal convergence of the displacement and stress fields in both cases, with error estimates that are independent...

A family of discontinuous Galerkin mixed methods for nearly and perfectly incompressible elasticity∗

Yongxing Shen, Adrian J. Lew (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

We introduce a family of mixed discontinuous Galerkin (DG) finite element methods for nearly and perfectly incompressible linear elasticity. These mixed methods allow the choice of polynomials of any order k ≥ 1 for the approximation of the displacement field, and of order k or k − 1 for the pressure space, and are stable for any positive value of the stabilization parameter. We prove the optimal convergence of the displacement and stress fields...

A finite difference method for fractional diffusion equations with Neumann boundary conditions

Béla J. Szekeres, Ferenc Izsák (2015)

Open Mathematics

A finite difference numerical method is investigated for fractional order diffusion problems in one space dimension. The basis of the mathematical model and the numerical approximation is an appropriate extension of the initial values, which incorporates homogeneous Dirichlet or Neumann type boundary conditions. The wellposedness of the obtained initial value problem is proved and it is pointed out that each extension is compatible with the original boundary conditions. Accordingly, a finite difference...

A finite element discretization of the three-dimensional Navier–Stokes equations with mixed boundary conditions

Christine Bernardi, Frédéric Hecht, Rüdiger Verfürth (2009)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider a variational formulation of the three-dimensional Navier–Stokes equations with mixed boundary conditions and prove that the variational problem admits a solution provided that the domain satisfies a suitable regularity assumption. Next, we propose a finite element discretization relying on the Galerkin method and establish a priori and a posteriori error estimates.

Currently displaying 1 – 20 of 597

Page 1 Next