Existence de maillages optimaux dans les méthodes d'éléments finis

Paula de Oliveira

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1980)

  • Volume: 14, Issue: 3, page 279-290
  • ISSN: 0764-583X

How to cite

top

de Oliveira, Paula. "Existence de maillages optimaux dans les méthodes d'éléments finis." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 14.3 (1980): 279-290. <http://eudml.org/doc/193362>.

@article{deOliveira1980,
author = {de Oliveira, Paula},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {error minimization; finite element methods; optimal mesh},
language = {fre},
number = {3},
pages = {279-290},
publisher = {Dunod},
title = {Existence de maillages optimaux dans les méthodes d'éléments finis},
url = {http://eudml.org/doc/193362},
volume = {14},
year = {1980},
}

TY - JOUR
AU - de Oliveira, Paula
TI - Existence de maillages optimaux dans les méthodes d'éléments finis
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1980
PB - Dunod
VL - 14
IS - 3
SP - 279
EP - 290
LA - fre
KW - error minimization; finite element methods; optimal mesh
UR - http://eudml.org/doc/193362
ER -

References

top
  1. 1 I BABUSKA et W RHEINBOLDT, Analysis of Optimal Finite Element in R , University of Maryland, Technical note BN-869, 1978 Zbl0431.65055
  2. 2 I BABUšKA et W RHEINBOLDT, Error Estimates for Adaptive Finite Element Computations, University of Maryland, Technical note BN-854, 1977, S I A M J Num anal (à paraître) Zbl0398.65069MR483395
  3. 3 W E CARROLL et R M BARKER, A Theorem of Optimum Finite Element Idealisation, Int J Solids and Structures, vol 9, 1973, p 883-895 MR337119
  4. 4 Ph CIARLET, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978 Zbl0383.65058MR520174
  5. 5 G M MCNEICE et P V MARCAL, Optimization of Finite Element Grids Based on Minimum Potential Energy, J Engg for Industry, vol 95, série B, n° 1, 1973, p 186-190 
  6. 6 J NEČAS, Les méthodes directes en théorie des équations elliptiques, Masson, Paris, 1967 MR227584
  7. 7 P OLIVEIRA, Maillages optimaux dans les méthodes d'éléments finis, Thèse de 3e cycle, Paris, 1979 Zbl0447.65062
  8. 8 P OLIVEIRADérivabilité de l'erreur par rapport à la triangulation dans les méthodes d'éléments finis R A I R O , Analyse numérique, vol 14, n° 3 1980 Zbl0447.65063
  9. 9 W PRAGER, A Note on the Optimal Choice of Finite Elements Grids, Computer Methods in Applied Mechanics and Engineering, vol 6, 1975, p 363-366 Zbl0323.73059MR458944
  10. 10 J W TANG et D J TURCKE, Characteristics of Optimal Grids, Computer Methods in Applied Mechanics and Engineering, vol 11, 1977, p 31-37 
  11. 11 D J TURCKE et G M MCNEICE, Guidelines for Selecting Finite Element Grids Based on an Optimization Study, Computers and Structures, vol 4, 1974, p 499-519 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.