Sur le calcul de la partie principale d'un tore de bifurcation pour un système différentiel périodique
- Volume: 15, Issue: 1, page 27-39
- ISSN: 0764-583X
Access Full Article
topHow to cite
topReferences
top- 1. R. Bouc, M. DEFILIPPI, G. Iooss, On a problem of forced nonlinear oscillation. Numerical example of bifurcation into an invariant torus. Nonlinear Analysis, Theory,Methods and Applications, 2, n° 2, 211-224 (1978). Zbl0411.34022MR512284
- 2. M. DEFILIPPI, Quelques aspects des oscillations sous-harmoniques et irregulieres de deux circuits couplés non linéaires. Thèse de Doctorat d'État, Marseille (1974).
- 3. J. K. HALE, Ordinary differential équations. Wiley Interscience (1969). Zbl0186.40901MR419901
- 4. G. Iooss, D. D. JOSEPH, Elementary stability and bifurcation theory. Chap. X (à paraître). Zbl0443.34001
- 5. D. D. JOSEPH, Remarks about bifurcation and stability of quasiperiodic solutionswhich bifurcate from periodic solutions of the Navier-Stokes équations. SpringerLecture Notes in Mathematics, n° 322 (1973). Zbl0268.35009
- 6. T. KATO, Perturbation theory for linear operators. Springer-Verlag (1976). Zbl0342.47009MR407617
- 7. L. PUST, Vibrations of nonlinear undampted two-degree of freedom system. Nakladatelstin Cekoslovenske akademieved (1959). Zbl0084.39901
- 8. M. URABE, GalerkwL s procedure for nonlinear periodic System. . Arch. Ration. Mech.Analysis, 20, 120 (1965). Zbl0133.35502MR182771