Sur le calcul de la partie principale d'un tore de bifurcation pour un système différentiel périodique

M. Defilippi

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1981)

  • Volume: 15, Issue: 1, page 27-39
  • ISSN: 0764-583X

How to cite

top

Defilippi, M.. "Sur le calcul de la partie principale d'un tore de bifurcation pour un système différentiel périodique." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 15.1 (1981): 27-39. <http://eudml.org/doc/193368>.

@article{Defilippi1981,
author = {Defilippi, M.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {bifurcating solutions; invariant torus; analytical methods},
language = {fre},
number = {1},
pages = {27-39},
publisher = {Dunod},
title = {Sur le calcul de la partie principale d'un tore de bifurcation pour un système différentiel périodique},
url = {http://eudml.org/doc/193368},
volume = {15},
year = {1981},
}

TY - JOUR
AU - Defilippi, M.
TI - Sur le calcul de la partie principale d'un tore de bifurcation pour un système différentiel périodique
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1981
PB - Dunod
VL - 15
IS - 1
SP - 27
EP - 39
LA - fre
KW - bifurcating solutions; invariant torus; analytical methods
UR - http://eudml.org/doc/193368
ER -

References

top
  1. 1. R. Bouc, M. DEFILIPPI, G. Iooss, On a problem of forced nonlinear oscillation. Numerical example of bifurcation into an invariant torus. Nonlinear Analysis, Theory,Methods and Applications, 2, n° 2, 211-224 (1978). Zbl0411.34022MR512284
  2. 2. M. DEFILIPPI, Quelques aspects des oscillations sous-harmoniques et irregulieres de deux circuits couplés non linéaires. Thèse de Doctorat d'État, Marseille (1974). 
  3. 3. J. K. HALE, Ordinary differential équations. Wiley Interscience (1969). Zbl0186.40901MR419901
  4. 4. G. Iooss, D. D. JOSEPH, Elementary stability and bifurcation theory. Chap. X (à paraître). Zbl0443.34001
  5. 5. D. D. JOSEPH, Remarks about bifurcation and stability of quasiperiodic solutionswhich bifurcate from periodic solutions of the Navier-Stokes équations. SpringerLecture Notes in Mathematics, n° 322 (1973). Zbl0268.35009
  6. 6. T. KATO, Perturbation theory for linear operators. Springer-Verlag (1976). Zbl0342.47009MR407617
  7. 7. L. PUST, Vibrations of nonlinear undampted two-degree of freedom system. Nakladatelstin Cekoslovenske akademieved (1959). Zbl0084.39901
  8. 8. M. URABE, GalerkwL s procedure for nonlinear periodic System. . Arch. Ration. Mech.Analysis, 20, 120 (1965). Zbl0133.35502MR182771

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.