Loading [MathJax]/extensions/MathZoom.js
Skeletal patterning in the vertebrate limb,
i.e., the spatiotemporal regulation of cartilage differentiation
(chondrogenesis) during embryogenesis and regeneration, is one
of the best studied examples of a multicellular developmental process.
Recently [Alber et al., The morphostatic limit for a model of
skeletal pattern formation in the vertebrate limb, Bulletin of
Mathematical Biology, 2008, v70, pp. 460-483], a simplified two-equation
reaction-diffusion system was developed to describe the interaction...
Matrix polynomials play an important role in the theory of matrix differential equations. We develop a fixed point method to compute solutions of matrix polynomials equations, where the matricial elements of the matrix polynomial are considered separately as complex polynomials. Numerical examples illustrate the method presented.
Shifting a numerically given function we obtain a fundamental matrix of the linear differential system with a constant matrix . Using the fundamental matrix we calculate , calculating the eigenvalues of we obtain and using the least square method we determine .
A general construction of test functions in the Petrov-Galerkin method is described. Using this construction; algorithms for an approximate solution of the Dirichlet problem for the differential equation are presented and analyzed theoretically. The positive number is supposed to be much less than the discretization step and the values of . An algorithm for the corresponding two-dimensional problem is also suggested and results of numerical tests are introduced.
Following the -convergence approach introduced by Müller and Ortiz, the convergence of discrete dynamics for lagrangians with quadratic behavior is established.
Following the Γ-convergence approach introduced by Müller and Ortiz, the convergence of discrete dynamics for Lagrangians with quadratic behavior is established.
This paper is further concerned with the finite-time generalized outer synchronization between two different dimensional chaotic systems with noise perturbation via an adaptive controller. First of all, we introduce the definition of finite-time generalized outer synchronization between two different dimensional chaotic systems. Then, employing the finite-time stability theory, we design an adaptive feedback controller to realize the generalized outer synchronization between two different dimensional...
In this paper, we present an abstract framework which describes algebraically the derivation of order conditions independently of the nature of differential equations considered or the type of integrators used to solve them. Our structure includes a Hopf algebra of functions, whose properties are used to answer several questions of prime interest in numerical analysis. In particular, we show that, under some mild assumptions, there exist integrators of arbitrarily high orders for arbitrary (modified)...
Consider a bifurcation problem, namely, its bifurcation equation. There is a diffeomorphism linking the actual solution set with an unfolded normal form of the bifurcation equation. The differential of this diffeomorphism is a valuable information for a numerical analysis of the imperfect bifurcation. The aim of this paper is to construct algorithms for a computation of . Singularity classes containing bifurcation points with , are considered.
A new class of controlled time-varying complex dynamical networks with similarity is investigated and a decentralized holographic-structure controller is designed to stabilize the network asymptotically at its equilibrium states. The control design is based on the similarity assumption for isolated node dynamics and the topological structure of the overall network. Network synchronization problems, both locally and globally, are considered on the ground of decentralized control approach. Each sub-controller...
In this paper, we study differential equations arising from the generating functions of the generalized Bell polynomials.We give explicit identities for the generalized Bell polynomials. Finally, we investigate the zeros of the generalized Bell polynomials by using numerical simulations.
We prove a convergence result for a time discrete process of the form under weak conditions on the function . This result is a slight generalization of the convergence result given in [5].Furthermore, we discuss applications to minimizing problems, boundary value problems and systems of nonlinear equations.
Currently displaying 1 –
20 of
40