Interior error estimates for semi-discrete Galerkin approximations for parabolic equations

J. A. Nitsche

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1981)

  • Volume: 15, Issue: 2, page 171-176
  • ISSN: 0764-583X

How to cite

top

Nitsche, J. A.. "Interior error estimates for semi-discrete Galerkin approximations for parabolic equations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 15.2 (1981): 171-176. <http://eudml.org/doc/193374>.

@article{Nitsche1981,
author = {Nitsche, J. A.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {initial boundary value problem; Galerkin method; optimal order; finite elements},
language = {eng},
number = {2},
pages = {171-176},
publisher = {Dunod},
title = {Interior error estimates for semi-discrete Galerkin approximations for parabolic equations},
url = {http://eudml.org/doc/193374},
volume = {15},
year = {1981},
}

TY - JOUR
AU - Nitsche, J. A.
TI - Interior error estimates for semi-discrete Galerkin approximations for parabolic equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1981
PB - Dunod
VL - 15
IS - 2
SP - 171
EP - 176
LA - eng
KW - initial boundary value problem; Galerkin method; optimal order; finite elements
UR - http://eudml.org/doc/193374
ER -

References

top
  1. 1. J. H. BRAMBLE, J. NITSCHE and A. SCHATZ, Maximum-norm interior estimates for Ritz-Galerkin methods. Math Comp 29, 677-688 (1975). Zbl0316.65023MR398120
  2. 2. J. H. BRAMBLE, A. SCHATZ, V. THOMEE and L. B. WAHLBIN, Some convergence estimates for semidiscrete Galerkin type approximations for parabolic equations. SIAM J Numer Anal 14, 218-241 (1977). Zbl0364.65084MR448926
  3. 3. J. JR. DOUGLAS, T. DUPONT and L. B. WAHLBIN, The stability in Lq of the L2-projection into finite element function spaces. Numer Math 23, 193-197 (1975). Zbl0297.41022MR388799
  4. 4. H.-P. HELFRICH, Fehlerabschatzungen fdr das Galerkinverfahren zur Losung von Evolutionsgleichungen. Manuscripta Math 13, 219-235 (1974). Zbl0323.65037MR356513
  5. 5. J. NITSCHE, Interior error estimates of projection methods. Proceedings Equadiff 3, Czechoslovak Conference on Differential Equations and their Applications, 235-239, Brno (1972). Zbl0357.65090MR359361
  6. 6. J. NITSCHE and A. SCHATZ, On local approximation properties of L 2 -projection on spline-subspaces. Appl Anal 2, 161-168 (1972). Zbl0239.41007MR397268
  7. 7. J. NITSCHE and A. SCHATZ, Interior estimates for Ritz-Galerkin methods. Math Comp 28, 937-958 (1974). Zbl0298.65071MR373325
  8. 8. V. THOMEE, Some convergence results for Galerkin methods for parabolic boundary value problems. Proceedings of a Symposium on Mathematical Aspects of Finite Elements m Partial Differential Equations, Madison, Wisc , Apr 1-3, 1974, C de Boor ed , Academic Press, 55-88 (1974). Zbl0343.65046MR657811
  9. 9. V. THOMEE, Some interior estimates for semidiscrete Galerkin approximations for parabolic equations. Math Comp 33, 37-62 (1979). Zbl0419.65073MR514809

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.