Finite element subspaces with optimal rates of convergence for the stationary Stokes problem
- Volume: 16, Issue: 1, page 49-66
- ISSN: 0764-583X
Access Full Article
topHow to cite
topMansfield, Lois. "Finite element subspaces with optimal rates of convergence for the stationary Stokes problem." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 16.1 (1982): 49-66. <http://eudml.org/doc/193390>.
@article{Mansfield1982,
author = {Mansfield, Lois},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {finite element methods; stationary Stokes problem; optimal rates of convergence},
language = {eng},
number = {1},
pages = {49-66},
publisher = {Dunod},
title = {Finite element subspaces with optimal rates of convergence for the stationary Stokes problem},
url = {http://eudml.org/doc/193390},
volume = {16},
year = {1982},
}
TY - JOUR
AU - Mansfield, Lois
TI - Finite element subspaces with optimal rates of convergence for the stationary Stokes problem
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1982
PB - Dunod
VL - 16
IS - 1
SP - 49
EP - 66
LA - eng
KW - finite element methods; stationary Stokes problem; optimal rates of convergence
UR - http://eudml.org/doc/193390
ER -
References
top- 1. M. BERCOVIER and M. ENGELMAN, A finite element for the numerical solution of viscous incompressible flows, J . Comp. Phys., 30 (1979), 181-201. Zbl0395.76040MR528199
- 2. G. BIRKHOFF, Tricubic polynomial interpolation, Proc. Natl Acad. Sel 68 (1971),1162-64. Zbl0242.41007MR299982
- 3. G. IRKHOFF and L. MANSFIELD, Compatible triangular finite éléments, J . Math. Anal Appl., 47 (1974), 531-53. Zbl0284.35021MR359353
- 4. J. H. BRAMBLE and M. ZLAMAL, Triangular elements in the fînite element method, Math. Comp., 24 (1970), 809-20, Zbl0226.65073MR282540
- 5. P. G. CIARLET and P. A. RAVIART, General Lagrange and Hermite interpolation in R n with applications to finite éléments methods, rch. Raîional Mech. Anal, 46(1972), 177-99, Zbl0243.41004MR336957
- 6. P. G. CIARLET and P. A. RAVIART, The combined effect of curved boundaries and numerical intergration in isoparametric finite element methods, The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, A. K. Aziz, ed. Academic Press, New York, 1972, pp. 409-74. Zbl0262.65070MR421108
- 7. M. CROUZEIX and P. A. RAVIART, Conforming and nonconforming finite element methods for solving the stationary Stokes equations, R.A.I.R.O., 7 (1973), 33-76. Zbl0302.65087MR343661
- 8. V. GIRAULT and P. A. RAVIART, Finite Element Approximation of the Navier Stokes Equations, Lecture Notes in Mathematics, vol. 749, Springer-Verlag, 1979. Zbl0413.65081MR548867
- 9. P. JAMET and P. A. RAVIART, Numerical solution of the stationary Navier-Stokes equations by finite element methods, Lecture Notes in Computer Science, Springer Verlag, 10, 192-223. Zbl0285.76007MR448951
- 10. L. MANSFIELD, Higher order compatible triangular finite elements, Numer. Math., 22 (1974), 89-97. Zbl0265.65011MR351040
- 11. L. MANSFIELD, Interpolation to boundary data in tetrahedra with applications to compatible finite éléments, J. Math. Anal Appl., 56 (1976), 137-64. Zbl0361.41002MR423757
- 12. A. H. STROUD, Approximate Calculation of Multiple Intégrais, Prentice Hall, Englewood Cliffs, N. J., 1971. Zbl0379.65013MR327006
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.