Local error estimates for finite element discretization of the Stokes equations

Douglas N. Arnold; Liu Xiaobo

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1995)

  • Volume: 29, Issue: 3, page 367-389
  • ISSN: 0764-583X

How to cite

top

Arnold, Douglas N., and Xiaobo, Liu. "Local error estimates for finite element discretization of the Stokes equations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 29.3 (1995): 367-389. <http://eudml.org/doc/193777>.

@article{Arnold1995,
author = {Arnold, Douglas N., Xiaobo, Liu},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {interior error estimates; local error estimates; mixed finite element; stationary Stokes equations; Stokes system},
language = {eng},
number = {3},
pages = {367-389},
publisher = {Dunod},
title = {Local error estimates for finite element discretization of the Stokes equations},
url = {http://eudml.org/doc/193777},
volume = {29},
year = {1995},
}

TY - JOUR
AU - Arnold, Douglas N.
AU - Xiaobo, Liu
TI - Local error estimates for finite element discretization of the Stokes equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1995
PB - Dunod
VL - 29
IS - 3
SP - 367
EP - 389
LA - eng
KW - interior error estimates; local error estimates; mixed finite element; stationary Stokes equations; Stokes system
UR - http://eudml.org/doc/193777
ER -

References

top
  1. [1] D. N. ARNOLD, F. BREZZI and M. FORTIN, A stable finite element for the Stokes equations, Calcolo, 21, 1984, pp. 337-344. Zbl0593.76039MR799997
  2. [2] D. N. ARNOLD and R. S. FALK, A uniformly accurate finite element method for the Mindlin-Reissner plate, SIAM J. Numer. Anal, 26, 1989, pp. 1276-1290. Zbl0696.73040MR1025088
  3. [3] M. CROUZEIX and P.-A. RAVIART, Conforming and non-conforming finite element methods for solving the stationary Stokes equations, RAIRO Anal Numér., 7 R-3, 1973, pp. 33-76. Zbl0302.65087MR343661
  4. [4] M. DAUGE, Stationary Stokes and Navier-Stokes Systems on two- or three-dimentional domains with corners. Part I : Linearized equations, SIAM J. Math. Anal., 20, 1989, pp. 74-97. Zbl0681.35071MR977489
  5. [5] J. Jr. DOUGLAS and R. A. MILNER, Interior and superconvergence estimates for mixed methods for second order elliptic problems, RAIRO Modél. Math. Anal. Numér., 19, 1985, pp. 397-428. Zbl0613.65110MR807324
  6. [6] M. FORTIN, Calcul numérique des écoulements des fluides de Bingham et des fluides Newtoniens incompressible par des méthodes d'éléments finis, Université de Paris VI, Doctoral thesis, 1972. 
  7. [7] L. GASTALDI, Uniform interior error estimates for the Reissner-Mindlin plate model, Math. Comp., 61, 1993, pp. 539-567. Zbl0784.73046MR1185245
  8. [8] P. HOOD and C. TAYLOR, A numerical solution of the Navier-Stokes equations using the finite element technique, Compuh & Fluids, 1, 1973, pp. 73-100. Zbl0328.76020MR339677
  9. [9] L. MANSFIELD, Finite element subspaces with optimal rates of convergence for stationary Stokes problem, RAIRO Anal. Numér., 16, 1982, pp. 49-66. Zbl0477.65084MR648745
  10. [10] J. A. NlTSCHE and A. H. SCHATZ, Interior estimate for Ritz-Galerkin methods, Math. Comp., 28, 1974, pp. 937-958. Zbl0298.65071MR373325
  11. [11] R. TÉMAM, Navier-Stokes Equations, North-Holland, Amsterdam, 1984. Zbl0568.35002MR603444
  12. [12] L. B. WAHLBIN, Local Behavior in Finite Element Methods, in Handbook of Numerical Analysis, P. G, Ciarlet and J. L. Lions, eds., Elsevier, Amsterdam-New York, 1991. Zbl0875.65089MR1115238

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.