Stabilité et convergence des méthodes spectrales polynômiales. Application à l'équation d'advection

B. Mercier

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1982)

  • Volume: 16, Issue: 1, page 67-100
  • ISSN: 0764-583X

How to cite

top

Mercier, B.. "Stabilité et convergence des méthodes spectrales polynômiales. Application à l'équation d'advection." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 16.1 (1982): 67-100. <http://eudml.org/doc/193392>.

@article{Mercier1982,
author = {Mercier, B.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {linear evolution equations; hyperbolic type; semidiscretization; stability; convergence; Galerkin method; Tau method; least square method; Crank-Nicholson scheme; fast Fourier transform; spectral methods},
language = {fre},
number = {1},
pages = {67-100},
publisher = {Dunod},
title = {Stabilité et convergence des méthodes spectrales polynômiales. Application à l'équation d'advection},
url = {http://eudml.org/doc/193392},
volume = {16},
year = {1982},
}

TY - JOUR
AU - Mercier, B.
TI - Stabilité et convergence des méthodes spectrales polynômiales. Application à l'équation d'advection
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1982
PB - Dunod
VL - 16
IS - 1
SP - 67
EP - 100
LA - fre
KW - linear evolution equations; hyperbolic type; semidiscretization; stability; convergence; Galerkin method; Tau method; least square method; Crank-Nicholson scheme; fast Fourier transform; spectral methods
UR - http://eudml.org/doc/193392
ER -

References

top
  1. 1 D GOTTLIEB, S. A. ORSZAG, Numerical Analysis of Spectral methods, SIAM F Regional conferences # 26, 1977 Zbl0412.65058
  2. 2 P J LAURENT, Approximation et Optimisation, Hermann, Paris, 1972 Zbl0238.90058MR467080
  3. 3 P J DAVIS, P RABINOWITZ, Methods of Numerical Integration, Academic Press, 1975 Zbl0304.65016MR760629
  4. 4 C CANUTO, P QUARTERONI, à paraître 
  5. 5 J D LAMBERT, Computational Methods in Ordinary Differential Equations, John Wiley & Sons, New York, 1973 Zbl0258.65069MR423815
  6. 6 L AUSLANDER, R TOLIMIERI, Is Computing with the finite Fourier Transform pure or applied Mathematics ? Bull (New Series) AMS, 1,6 (1979) 847-898 Zbl0475.42014MR546312
  7. 7 R GLOWINSKI, J L LIONS, R TREMOLIERES, Analyse Numérique des Inéquations VariationneIles, Dunod, 1976 Zbl0358.65091

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.