Comportement d'itérations d'un opérateur de renormalisation
- Volume: 16, Issue: 4, page 301-318
- ISSN: 0764-583X
Access Full Article
topHow to cite
topCosnard, M.. "Comportement d'itérations d'un opérateur de renormalisation." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 16.4 (1982): 301-318. <http://eudml.org/doc/193401>.
@article{Cosnard1982,
author = {Cosnard, M.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {iterative properties; common fixed point; uniformly convergent; asymptotic expansion; bifurcation scheme; renormalization operator},
language = {fre},
number = {4},
pages = {301-318},
publisher = {Dunod},
title = {Comportement d'itérations d'un opérateur de renormalisation},
url = {http://eudml.org/doc/193401},
volume = {16},
year = {1982},
}
TY - JOUR
AU - Cosnard, M.
TI - Comportement d'itérations d'un opérateur de renormalisation
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1982
PB - Dunod
VL - 16
IS - 4
SP - 301
EP - 318
LA - fre
KW - iterative properties; common fixed point; uniformly convergent; asymptotic expansion; bifurcation scheme; renormalization operator
UR - http://eudml.org/doc/193401
ER -
References
top- [1] M. CAMPANINO, H. EPSTEIN, On the existence of Feigenbawn's fixed point. A paraître dans Comm Math Phys. Zbl0474.58013
- [2] P. COLLET, J. P. ECKMANN, Iterated maps on the interval as dynamital Systems. Progress in Physics, Birkhauser (1980). Zbl0458.58002MR613981
- [3] M. COSNARD, M. DELARCHE, A. EBERHARD, H. LEPELTIER, The three possible behavious for the iterates sequence of a real continuous function. R. R.n° 89, IMAG (1977.
- [4] P. COULLET, J. TRESSER, Iterations d'endomorphismes et groupe de renormalisation. C. R. A. S. 287 (1978) 577. Zbl0402.54046
- [5] J. DIEUDONNE, Calcul infinitesimal. Coll. Methodes, Hermann, Paris (1968). Zbl0155.10001MR226971
- [6] M. FEIGENBAUM, Quantitative universality for a class of nonlinear transformations. J. Stat Phys, 19, 25-52 (1978). Zbl0509.58037MR501179
- [7] I. GUMOWSKI, C. MIRA, Recurrences and discrete dynamic systems. Lecture Notes in Math, 809 (1980). Zbl0449.58003MR582824
- [8] I. GUMOWSKI, C. MIRA, Dynamique chaotique. CEPADUES Edition, Toulouse (1980). Zbl0442.93001MR577818
- [9] M. KUCZMA, Functional equation in a single variable. Polish Scient. Publ., Varsovie (1968). Zbl0196.16403MR228862
- [10] O. E. LANDFORD III, Smooth transformations of intervals. Seminaire Bourbaki, n° 563 (1980). Zbl0514.58028
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.