Comportement d'itérations d'un opérateur de renormalisation

M. Cosnard

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1982)

  • Volume: 16, Issue: 4, page 301-318
  • ISSN: 0764-583X

How to cite

top

Cosnard, M.. "Comportement d'itérations d'un opérateur de renormalisation." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 16.4 (1982): 301-318. <http://eudml.org/doc/193401>.

@article{Cosnard1982,
author = {Cosnard, M.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {iterative properties; common fixed point; uniformly convergent; asymptotic expansion; bifurcation scheme; renormalization operator},
language = {fre},
number = {4},
pages = {301-318},
publisher = {Dunod},
title = {Comportement d'itérations d'un opérateur de renormalisation},
url = {http://eudml.org/doc/193401},
volume = {16},
year = {1982},
}

TY - JOUR
AU - Cosnard, M.
TI - Comportement d'itérations d'un opérateur de renormalisation
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1982
PB - Dunod
VL - 16
IS - 4
SP - 301
EP - 318
LA - fre
KW - iterative properties; common fixed point; uniformly convergent; asymptotic expansion; bifurcation scheme; renormalization operator
UR - http://eudml.org/doc/193401
ER -

References

top
  1. [1] M. CAMPANINO, H. EPSTEIN, On the existence of Feigenbawn's fixed point. A paraître dans Comm Math Phys. Zbl0474.58013
  2. [2] P. COLLET, J. P. ECKMANN, Iterated maps on the interval as dynamital Systems. Progress in Physics, Birkhauser (1980). Zbl0458.58002MR613981
  3. [3] M. COSNARD, M. DELARCHE, A. EBERHARD, H. LEPELTIER, The three possible behavious for the iterates sequence of a real continuous function. R. R.n° 89, IMAG (1977. 
  4. [4] P. COULLET, J. TRESSER, Iterations d'endomorphismes et groupe de renormalisation. C. R. A. S. 287 (1978) 577. Zbl0402.54046
  5. [5] J. DIEUDONNE, Calcul infinitesimal. Coll. Methodes, Hermann, Paris (1968). Zbl0155.10001MR226971
  6. [6] M. FEIGENBAUM, Quantitative universality for a class of nonlinear transformations. J. Stat Phys, 19, 25-52 (1978). Zbl0509.58037MR501179
  7. [7] I. GUMOWSKI, C. MIRA, Recurrences and discrete dynamic systems. Lecture Notes in Math, 809 (1980). Zbl0449.58003MR582824
  8. [8] I. GUMOWSKI, C. MIRA, Dynamique chaotique. CEPADUES Edition, Toulouse (1980). Zbl0442.93001MR577818
  9. [9] M. KUCZMA, Functional equation in a single variable. Polish Scient. Publ., Varsovie (1968). Zbl0196.16403MR228862
  10. [10] O. E. LANDFORD III, Smooth transformations of intervals. Seminaire Bourbaki, n° 563 (1980). Zbl0514.58028

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.