Approximation of Burgers' equation by pseudo-spectral methods
- Volume: 16, Issue: 4, page 375-404
- ISSN: 0764-583X
Access Full Article
topHow to cite
topMaday, Y., and Quateroni, A.. "Approximation of Burgers' equation by pseudo-spectral methods." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 16.4 (1982): 375-404. <http://eudml.org/doc/193404>.
@article{Maday1982,
author = {Maday, Y., Quateroni, A.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {pseudo-spectral methods; Chebyshev and Legendre polynomial expansions; advection-diffusion equation; steady-state Burgers' equation},
language = {eng},
number = {4},
pages = {375-404},
publisher = {Dunod},
title = {Approximation of Burgers' equation by pseudo-spectral methods},
url = {http://eudml.org/doc/193404},
volume = {16},
year = {1982},
}
TY - JOUR
AU - Maday, Y.
AU - Quateroni, A.
TI - Approximation of Burgers' equation by pseudo-spectral methods
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1982
PB - Dunod
VL - 16
IS - 4
SP - 375
EP - 404
LA - eng
KW - pseudo-spectral methods; Chebyshev and Legendre polynomial expansions; advection-diffusion equation; steady-state Burgers' equation
UR - http://eudml.org/doc/193404
ER -
References
top- [1] R A ADAMS, Sobolev spaces, Academic Press, New York (1975) Zbl0314.46030MR450957
- [2] J BABUSKA, A K AZIZ, " Survey lectures on the mathematical foundations of the finite element method ", in The Mathematical Foundations of The Finite Element Method with Applications to Partial Differential Equations, Ed Aziz, Academic Press, NewYork (1972), 3-343 Zbl0268.65052
- [3] J BERGH, J LOFSTROM, Interpolation Spaces An Introduction, Springer Verlag, Berlin (1976) Zbl0344.46071MR482275
- [4] F BREZZI, J RAPPAZ, P A RAVIART, Finite dimensional approximation of nonlinear problems Part I branches of nonsingular solutions Num Math , 36 (1980), 1-25 Zbl0488.65021MR595803
- [5] C CANUTO, A QUARTERONI, Spectral and pseudo-spectral methods for parabolic problems with non periodic boundary conditions, Calcolo, 18 (1981), pp 197-217 Zbl0485.65078MR647825
- [6] C CANUTO, A QUARTERONIApproximation results for orthogonal polynomials in Sobolev spaces, Math Comput, 38 (1982), pp 67 86 Zbl0567.41008MR637287
- [7] A DAVIS, P RABINOWITZMethods of Numerical Integration, Academic Press,New York (1975) Zbl0304.65016MR448814
- [8] D GOTTLIEB, S A ORSZAG, Numerical Analysis of Spectral Methods Theory and Applications, Regional Conference Series in applied mathematics, SIAM, Philadelphia (1977) Zbl0412.65058MR520152
- [9] H O KREISS, J OLIGER, Stability of the Fourier method, SIAM J Num An ,16, 3 (1949), 421-433 Zbl0419.65076MR530479
- [10] J L LIONS, E MAGENES, Non Homogeneous Boundary Value Problems and Applications, Springer Verlag, Berlin (1972) Zbl0223.35039
- [11] Y MADAY, A QUARTERONILegendre and Chebyshev spectral approximation of Burgers equation, Numer Math, 37 (1981), pp 321-332 Zbl0452.41007
- [12] Y MADAY, A QUARTERONI, Spectral and pseudo-spectral approximations of Navier-Stokes equations, SIAM J Numer Anal, 19 (1982), pp 769-780 Zbl0503.76035
- [13] R E NICKELL, D K GARTLING, G STRANG, Spectral decomposition in advection-diffusion analysis by finite element methods, Comp Meths Appl Mech Eng 17/18 (1979), 561-580 Zbl0403.76072
- [14] G SZEGO, Orthogonal Polynomials, AMS Colloquium publications, vol 23,AMS, New York (1939) Zbl0023.21505
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.