Approximation of Burgers' equation by pseudo-spectral methods
- Volume: 16, Issue: 4, page 375-404
- ISSN: 0764-583X
Access Full Article
topHow to cite
topReferences
top- [1] R A ADAMS, Sobolev spaces, Academic Press, New York (1975) Zbl0314.46030MR450957
- [2] J BABUSKA, A K AZIZ, " Survey lectures on the mathematical foundations of the finite element method ", in The Mathematical Foundations of The Finite Element Method with Applications to Partial Differential Equations, Ed Aziz, Academic Press, NewYork (1972), 3-343 Zbl0268.65052
- [3] J BERGH, J LOFSTROM, Interpolation Spaces An Introduction, Springer Verlag, Berlin (1976) Zbl0344.46071MR482275
- [4] F BREZZI, J RAPPAZ, P A RAVIART, Finite dimensional approximation of nonlinear problems Part I branches of nonsingular solutions Num Math , 36 (1980), 1-25 Zbl0488.65021MR595803
- [5] C CANUTO, A QUARTERONI, Spectral and pseudo-spectral methods for parabolic problems with non periodic boundary conditions, Calcolo, 18 (1981), pp 197-217 Zbl0485.65078MR647825
- [6] C CANUTO, A QUARTERONIApproximation results for orthogonal polynomials in Sobolev spaces, Math Comput, 38 (1982), pp 67 86 Zbl0567.41008MR637287
- [7] A DAVIS, P RABINOWITZMethods of Numerical Integration, Academic Press,New York (1975) Zbl0304.65016MR448814
- [8] D GOTTLIEB, S A ORSZAG, Numerical Analysis of Spectral Methods Theory and Applications, Regional Conference Series in applied mathematics, SIAM, Philadelphia (1977) Zbl0412.65058MR520152
- [9] H O KREISS, J OLIGER, Stability of the Fourier method, SIAM J Num An ,16, 3 (1949), 421-433 Zbl0419.65076MR530479
- [10] J L LIONS, E MAGENES, Non Homogeneous Boundary Value Problems and Applications, Springer Verlag, Berlin (1972) Zbl0223.35039
- [11] Y MADAY, A QUARTERONILegendre and Chebyshev spectral approximation of Burgers equation, Numer Math, 37 (1981), pp 321-332 Zbl0452.41007
- [12] Y MADAY, A QUARTERONI, Spectral and pseudo-spectral approximations of Navier-Stokes equations, SIAM J Numer Anal, 19 (1982), pp 769-780 Zbl0503.76035
- [13] R E NICKELL, D K GARTLING, G STRANG, Spectral decomposition in advection-diffusion analysis by finite element methods, Comp Meths Appl Mech Eng 17/18 (1979), 561-580 Zbl0403.76072
- [14] G SZEGO, Orthogonal Polynomials, AMS Colloquium publications, vol 23,AMS, New York (1939) Zbl0023.21505