On the existence and the regularity of an initial boundary problem of vorticity equation

C. Bardos; Kuo Pen Yu

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1983)

  • Volume: 17, Issue: 1, page 5-16
  • ISSN: 0764-583X

How to cite

top

Bardos, C., and Kuo Pen Yu. "On the existence and the regularity of an initial boundary problem of vorticity equation." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 17.1 (1983): 5-16. <http://eudml.org/doc/193409>.

@article{Bardos1983,
author = {Bardos, C., Kuo Pen Yu},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {existence; regularity; initial boundary problem; vorticity equation; Euler equation; incompressible fluids; two dimensional domain; uniqueness; smooth solution},
language = {eng},
number = {1},
pages = {5-16},
publisher = {Dunod},
title = {On the existence and the regularity of an initial boundary problem of vorticity equation},
url = {http://eudml.org/doc/193409},
volume = {17},
year = {1983},
}

TY - JOUR
AU - Bardos, C.
AU - Kuo Pen Yu
TI - On the existence and the regularity of an initial boundary problem of vorticity equation
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1983
PB - Dunod
VL - 17
IS - 1
SP - 5
EP - 16
LA - eng
KW - existence; regularity; initial boundary problem; vorticity equation; Euler equation; incompressible fluids; two dimensional domain; uniqueness; smooth solution
UR - http://eudml.org/doc/193409
ER -

References

top
  1. [1] C. BARDOS, Existence et Unicité de la solution de l'équation d'Euler en dimension deux. J. Math. Anal. and Appl. 40 (1972) 769-790. Zbl0249.35070MR333488
  2. [2] T. KATO, On the classical solution of the two dimensional non stationary Euler Equation. Arch. Rat. Mech. Anal. 25 (1967) 302-324. Zbl0166.45302MR211057
  3. [3] KUO PEN YU, A class of difference scheme for two dimensional vorticity equation of viscous fluid. Acta mathematica Sinica (1974) 242-258. MR458929
  4. [4] KUO PEN YU, Recorrected up wind scheme for in compressible viscous fluid problems. Acta Mathematica Sinica (1976) 30-38. Zbl0358.76022
  5. [5] KUO PEN YU, Difference Methods in Numerical weather prediction scientia atmospherica Sinica (1978) 103-114. 
  6. [6] KUO PEN YU, Difference Methods of fluid dynamics (I). Numerical solution of two dimensional vorticity Equation Acta Mechanica Sinica (1979) 129-147. 
  7. [7] O. A. LADYZENSKAIA et N. URALTCEVA, The mathematical theory of viscous Incompressible flow. Gordon and Breach, New York (1969). Zbl0184.52603MR254401
  8. [8] A. C. SCHAEFFER, Existence theorem for the flow of an incompressible fluid in two dimensions. Trans of the A.M.S. 42 (1937) 497-513. Zbl0018.12902MR1501931
  9. [9] W. WOLIBNER, Un théorème sur l'existence du mouvement plan d'un fluide parfait homogène et impressible pendant un temps infiniment long. Math Z, 37 (1933) 727-738. Zbl0008.06901

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.