On the existence and the regularity of an initial boundary problem of vorticity equation
- Volume: 17, Issue: 1, page 5-16
- ISSN: 0764-583X
Access Full Article
topHow to cite
topBardos, C., and Kuo Pen Yu. "On the existence and the regularity of an initial boundary problem of vorticity equation." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 17.1 (1983): 5-16. <http://eudml.org/doc/193409>.
@article{Bardos1983,
author = {Bardos, C., Kuo Pen Yu},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {existence; regularity; initial boundary problem; vorticity equation; Euler equation; incompressible fluids; two dimensional domain; uniqueness; smooth solution},
language = {eng},
number = {1},
pages = {5-16},
publisher = {Dunod},
title = {On the existence and the regularity of an initial boundary problem of vorticity equation},
url = {http://eudml.org/doc/193409},
volume = {17},
year = {1983},
}
TY - JOUR
AU - Bardos, C.
AU - Kuo Pen Yu
TI - On the existence and the regularity of an initial boundary problem of vorticity equation
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1983
PB - Dunod
VL - 17
IS - 1
SP - 5
EP - 16
LA - eng
KW - existence; regularity; initial boundary problem; vorticity equation; Euler equation; incompressible fluids; two dimensional domain; uniqueness; smooth solution
UR - http://eudml.org/doc/193409
ER -
References
top- [1] C. BARDOS, Existence et Unicité de la solution de l'équation d'Euler en dimension deux. J. Math. Anal. and Appl. 40 (1972) 769-790. Zbl0249.35070MR333488
- [2] T. KATO, On the classical solution of the two dimensional non stationary Euler Equation. Arch. Rat. Mech. Anal. 25 (1967) 302-324. Zbl0166.45302MR211057
- [3] KUO PEN YU, A class of difference scheme for two dimensional vorticity equation of viscous fluid. Acta mathematica Sinica (1974) 242-258. MR458929
- [4] KUO PEN YU, Recorrected up wind scheme for in compressible viscous fluid problems. Acta Mathematica Sinica (1976) 30-38. Zbl0358.76022
- [5] KUO PEN YU, Difference Methods in Numerical weather prediction scientia atmospherica Sinica (1978) 103-114.
- [6] KUO PEN YU, Difference Methods of fluid dynamics (I). Numerical solution of two dimensional vorticity Equation Acta Mechanica Sinica (1979) 129-147.
- [7] O. A. LADYZENSKAIA et N. URALTCEVA, The mathematical theory of viscous Incompressible flow. Gordon and Breach, New York (1969). Zbl0184.52603MR254401
- [8] A. C. SCHAEFFER, Existence theorem for the flow of an incompressible fluid in two dimensions. Trans of the A.M.S. 42 (1937) 497-513. Zbl0018.12902MR1501931
- [9] W. WOLIBNER, Un théorème sur l'existence du mouvement plan d'un fluide parfait homogène et impressible pendant un temps infiniment long. Math Z, 37 (1933) 727-738. Zbl0008.06901
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.