Méthodes d'éléments finis quasilinéaires en déplacement pour l'étude de milieux incompressibles

Vitoriano Ruas

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1983)

  • Volume: 17, Issue: 2, page 161-194
  • ISSN: 0764-583X

How to cite

top

Ruas, Vitoriano. "Méthodes d'éléments finis quasilinéaires en déplacement pour l'étude de milieux incompressibles." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 17.2 (1983): 161-194. <http://eudml.org/doc/193414>.

@article{Ruas1983,
author = {Ruas, Vitoriano},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {linear elasticity; incompressibility condition; simplicial finite elements; non-symmetric structure; pressure space; convergence analysis},
language = {fre},
number = {2},
pages = {161-194},
publisher = {Dunod},
title = {Méthodes d'éléments finis quasilinéaires en déplacement pour l'étude de milieux incompressibles},
url = {http://eudml.org/doc/193414},
volume = {17},
year = {1983},
}

TY - JOUR
AU - Ruas, Vitoriano
TI - Méthodes d'éléments finis quasilinéaires en déplacement pour l'étude de milieux incompressibles
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1983
PB - Dunod
VL - 17
IS - 2
SP - 161
EP - 194
LA - fre
KW - linear elasticity; incompressibility condition; simplicial finite elements; non-symmetric structure; pressure space; convergence analysis
UR - http://eudml.org/doc/193414
ER -

References

top
  1. [1] R. A. ADAMS, Sobolev Spaces, Academic Press, New York, 1975. Zbl0314.46030MR450957
  2. [2] A. K. Aziz and I. Babuska, Survey lectures on the mathematical foundations of the finite element method, in: The Mathematical Foundations of the Finite Element Method with Applications to Partial Biffer ential Equations, edited by by A. K. Aziz, Academic Press, New York, 1972, pp. 3-359. Zbl0268.65052MR421106
  3. [3] F. BREZZI, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers, RAIRO Analyse Numérique 8-R2, 1974, pp. 129-151. Zbl0338.90047MR365287
  4. [4] P. G. CIARLET, The Finite Element Method for Elliptic Problems, North Holland, Amsterdam, 1978. Zbl0383.65058MR520174
  5. [5] J. F. DEBONGNIE, Sur la formulation de Herrmann pour l'étude des solides incompressibles, Journal de Mécanique, Vol. 17, n° 4, 1978, pp. 531-557. Zbl0413.73015
  6. [6] M. ORTIN, Calcul Numérique des Écoulements de Fluides de Bingham et des Fluides Incompressibles par la méthode des Éléments Finis, Thèse de Doctorat d'État ès Sciences, Université Paris VI, 1972. 
  7. [7] V. GIRAULT and P. A. AVIART, Finite Element Approximation of the Navier-Stokes Equations, Lecture notes in Mathematics, Springer Verlag, Berlin, 1979. Zbl0413.65081MR548867
  8. [8] R. GLOWINSKI, J. L. LIONS and R. RÉMOLIÈRES, Analyse Numérique des Inéquations Variationnelles, Éditions Dunod-Bordas, Paris, 1976. Zbl0358.65091
  9. [9] P. GRISVARD, Behavior of the solutions of an elliptic boundary value problem in a polygonal or a polyhedral domain, in : Numerical Solution of Partial Differ ential Equations, III SYNSPADE 1975, edited by B. Hubbard, Academic Press, NewYork, 1976. Zbl0361.35022MR466912
  10. [10] C. JOHNSON and . PITKÂRANTA, Analysis of some mixed finite element methods related to reduced integration, Research Report 80.02 R of the Department of Computer Sciences of the Chalmers University of Technology and the University of Göteborg, 1980. Zbl0482.65058
  11. [11] . A. LADYZHENSKAYA and N. N. URAL'CEVA, Équations aux Dérivées Partielles de type Elliptique, Dunod, Paris, 1968. Zbl0164.13001MR239273
  12. [12] T. ODEN, Finite Eléments of Nonlinear Continua, McGraw Hill, New York, 1972. Zbl0235.73038
  13. [13] J. E. OSBORH, Regularity of Solutions of the Stokes problem in a polygonal domain, in : Numerical Solution of Partial Differ ential Equations, III Synspade 1975, edited by B. Hubbard, Academic Press, New York, 1976. Zbl0344.65049MR467032
  14. [14] J. PITKARÄNTA, On a mixed finite element method for the Stokes problem in R 3 , RAIRO - Analyse Numérique (à paraître). Zbl0488.76039
  15. [15] G. RAUGEL, Résolution Numérique de Problèmes Elliptiques dans des domaines avec Coins, Thèse de Doctorat de Troisième Cycle, Université de Rennes, 1978. 
  16. [16] V. RUAS, A class of asymmetrie finite element methods for solving finite incompressible elasticity problems, Comp. Meths. in Appl. Mechs. and Engin., 27, 1981,pp. 319-343. Zbl0467.73098MR632279
  17. [17] V. RUAS, Une méthode d'éléments finis non conformes en vitesse pour le problème de Stokes tridimensionnel, Matematica Aplicada e Computacional, V. 1, 1, pp. 53.74, 1982. Zbl0489.76049MR667618
  18. [18] V. RUAS, Méthodes d'Éléments Finis en Élasticité Incompressible Non Linéaire et Diverses Contributions à l'Approximation des Problèmes aux Limites, Thèse de Doctorat d'État ès Sciences, Université Pierre et Marie Curie, Paris, janvier 1982. 
  19. [19] G. STRANG and J. Fix, An Analysis of the Finite Element Method, Prentice Hall, Englewood Cliffs, N.J., 1973. Zbl0356.65096MR443377
  20. [20] R. TEMAM, Navier-Stokes Equations, North Holland, Amsterdam, 1977. Zbl0383.35057MR603444
  21. [21] J. M. THOMAS, Sur l'Analyse Numérique de Méthodes d'Éléments Finis Hybrides et Mixtes, Thèse de Doctorat d'État ès Sciences, Université Pierre et Marie Curie, Paris, 1977. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.