A numerical study of some questions in vortex rings theory
Henri Berestycki; Enrique Fernandez Cara; Roland Glowinski
- Volume: 18, Issue: 1, page 7-85
- ISSN: 0764-583X
Access Full Article
topHow to cite
topBerestycki, Henri, Fernandez Cara, Enrique, and Glowinski, Roland. "A numerical study of some questions in vortex rings theory." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 18.1 (1984): 7-85. <http://eudml.org/doc/193425>.
@article{Berestycki1984,
author = {Berestycki, Henri, Fernandez Cara, Enrique, Glowinski, Roland},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {axisymmetric vortex rings; ideal fluid; bounded domain; convergence of a finite element method; variable mesh procedure; free vortex velocity; free flux parameter},
language = {eng},
number = {1},
pages = {7-85},
publisher = {Dunod},
title = {A numerical study of some questions in vortex rings theory},
url = {http://eudml.org/doc/193425},
volume = {18},
year = {1984},
}
TY - JOUR
AU - Berestycki, Henri
AU - Fernandez Cara, Enrique
AU - Glowinski, Roland
TI - A numerical study of some questions in vortex rings theory
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1984
PB - Dunod
VL - 18
IS - 1
SP - 7
EP - 85
LA - eng
KW - axisymmetric vortex rings; ideal fluid; bounded domain; convergence of a finite element method; variable mesh procedure; free vortex velocity; free flux parameter
UR - http://eudml.org/doc/193425
ER -
References
top- [1] A. AMBROSETTI and G. MANCINI, to appear.
- [2] A. AMBROSETTI and G. MANCINI, Remarks on some free boundary problems, In Recent Contributions to Nonlinear Partial Differential Equations. H. Berestycki and H. Brézis éd. Pitman, London, 1981. Zbl0477.35084MR639743
- [3] J. F. G. AUCHMUTY and R. BEALS, Variational solutions of some nonlinear free boundary problems, Arch. Rat. Mech. Anal. 43 (1971), pp. 255-271. Zbl0225.49013MR337260
- [4] J. F. G. AUCHMUTY and T. B. BENJAMIN, Rearrangement existence proofs for vortex rings, In préparation.
- [5] P. BENILAN and H. BREZIS, Nonlinear problems related to the Thomas-Fermi equation, à paraître Zbl1150.35406
- [6] T. B. BENJAMIN, The alliance of practical and analytic insights into the nonlinear problems of fluid mechanics, in Applications of Methods of Functional Analysis to Problems of Mechanics, pp. 8-29. Lecture Notes in Math. N° 503. Springer-Verlag, New York, 1976. Zbl0369.76048MR671099
- [7] H. BERESTYCKI, Thèse de Doctorat d'État ès-Sciences, Univ. P. et M. Curie (Paris VI), 1980.
- [8] H. BERESTYCKI, Some free boundary problems in plasma physics and fluid mechanics, In Applications of Nonlinear Analysis to the Physical Sciences. H. Amann, N. Bazley and K. Kirchgassner ed. Pitman, London 1981. Zbl0503.76127MR659699
- [9] H. BERESTYCKI, Quelques questions à la théorie des tourbillons stationnaires dans un fluide idéal, J. Math. Pures Appl., to appear.
- [10] H. BERESTYCKI and H. BREZIS, Sur certains problèmes de frontière libre, Compte Rendus Acad. Se. Paris, série A, 283 (1976), pp. 1091-1094. Zbl0342.35014MR427812
- [11] H. BERESTYCKI and H. BREZIS, On a free boundary problem arising in plasma physics, Nonlinear Analysis, 4 (1980), pp. 415-436. Zbl0437.35032MR574364
- [12] H. BERESTYCKI and P. L. LIONS, A direct variational approach to the global theory of vortex rings in an ideal fluid, To appear.
- [13] H. BERESTYCKI and C. STUART, Sur des méthodes itératives pour la résolution de certains problèmes de valeurs propres non linéaires, Note C.R.A.S., to appear.
- [14] H. BERESTYCKI and C. STUART, Some itérative schemes for nonlinear eigenvalue problems, To appear.
- [15] M. S. BERGER and L. E. FRAENKEL, Nonlinear desingularization in certain free-boundary problems, Comra. Math. Phys. 77 (1980), pp. 149-172. Zbl0454.35087MR589430
- [16] N. BOURBAKI, Elément de Mathématiques : Livre VI, Intégration. Actualités Scient. Ind. Hermann, Paris 1963-67.
- [17] H. BREZIS, Some variational problems of the Thomas-Fermi type, In Variational Inequalities. Cottle, Gianessi and Lions éd., J. Wiley and Sons, New York 1980. Zbl0643.35108MR578739
- [18] H. BREZIS, R. BENGURIA and F. H. LIEB, The Thomas-Fermi Von Weizacker theory ofatoms and molécules, To appear in Comm. Math. Phys. Zbl0478.49035MR612246
- [19] J. P. CHRISTIANSEN and N. J. ZABUSKY, Instability, coalescence and fission offinit e area vortex structures, J. Fluid Mech., 61 (1973), pp.219-243. Zbl0266.76039
- [20] P. G. CIARLET, The Finite Element Method for Elliptic Problem. North-Holland, Amsterdam, 1978. Zbl0383.65058MR520174
- [21] P G CIARLET and P A RAVIAT, Maximum pnnciple and uniform convergence for the finite element method, Computer Methods in Applied Mechanics and Engineering, 2 (1973), pp 17-31 Zbl0251.65069MR375802
- [22] L COLLATZ, Functional Analysis and Numencal Mathematics, Academic Press, New York, 1966 Zbl0148.39002MR205126
- [23] G S DEEM and N J ZABUSKY, Vortex waves statwnary V-vortex waves , Phys Rev Letters, 40 (1978), pp 859-862 e
- [24] M J ESTEBAN, Thèse de Doctorat de 3e Cycle, Univ P et M Curie (Paris VI), 1981
- [25] M J ESTEBAN and P L LIONS, To appear
- [26] E FERNANDEZ CARA, Méthodes numériques pour des problèmes nonlinéaires apparaissant dans la théorie des tourbillons stationnaires d'un fluide idéal, Rapport de Recherche INRIA n° 39, October 1980
- [27] E, FERNANDEZ CARA, To appear
- [28] L E FRAENKEL and M S BERGER, On the global theory of vortex rings inanidéal fluid, Acta Math 132 (1974), pp 13-51 Zbl0282.76014MR422916
- [29] A FRIEDMAN and B TURKINGTON, Asymptotic estimates for an axisymmetric rotating fluid, J Functional Anal, to appear Zbl0435.35014MR578929
- [30] B GIDAS, NI, WEI-MING and L NIREMBERG, Symmetry and related properties via the maximum principle, Comm Math Phys 68 (1979), pp 209-243 Zbl0425.35020MR544879
- [31] R GLOWINSKI, Numencal Methods for Nonlinear Variational Problems, 2nd édition To appear Zbl0536.65054
- [32] J W KITCHEN, Concerning the convergence of iterates tofixed points, Stud Math 27 (1966), pp 247-249 Zbl0143.16601MR200759
- [33] H LAMB, Hydrodynamics (6th ed) Cambridge, 1932 Zbl0828.01012JFM58.1298.04
- [34] L LICHTENSTEIN, Uber einige existenz probleme der Hydrodynamik, Math Z , 23 (1925), pp 89-154 Zbl51.0658.01MR1544733JFM51.0658.01
- [35] L LICHTENSTEIN, Grundlagen der Hydrodynamik, Sprmger-Veriag, Berlin 1929
- [36] E H LIEB and B SIMON, The Thomas-Fermi theory of atoms, molecules and solids Advances in Math , 23 (1977), pp 22-116 1 3 Zbl0938.81568MR428944
- [37] P L LIONS, Mimmization problems in and applications to free boundary problems, To appear Zbl0467.49028
- [38] P LIONS, Minimization problems in , To appear Zbl0464.49019
- [39] NI, WEI-MING, On the existence of global vortex rings, To appear Zbl0457.76020MR583638
- [40] J NORBURY, Steady planar vortex pairs inan idéal fluid, Comm Pure Appl Math , 28 (1975), pp 679-700 Zbl0338.76015MR399645
- [41] J NORBURY, A steady vortex ring close to Hill's spherical vortex, Proc Camb Phil Soc , 72 (1972), pp 253-284 Zbl0256.76016MR302044
- [42] J NORBURY, A family of steady vortex rings, J Fluid Mech ,57 (1973), pp 417-431 Zbl0254.76018
- [43] R T PIERREHUMBERT, A family of steady translating vortex pairs with distnbuted vorticity, J Fluid Mech, 99 (1980), pp 129-144 Zbl0473.76034
- [44] J P PUEL, Sur un problème de valeur propre non linéaire et de frontière libre, Compte Rendus Ac Sc Paris, série A, 284 (1977), pp 861-863 Zbl0362.35024MR436755
- [45] P G SAFFMAN, The velocity of vortex rings, Studies in Appl Math , 49 (1970), pp 371-379 Zbl0224.76032
- [46] P G SAFFMAN, Dynamics of vorticity, J Fluid Mech , 106 (1981), pp 49-58 Zbl0465.76020
- [47] P G SAFFMAN and J C SCHATZMAN, Properties of a vortex street of finite vortices, To appear Zbl0484.76032MR632900
- [48] M. SERMANGE, Etude numérique des bifurcations et de la stabilité des solutions des équations de Grad-Shafranov. In IVe Colloque International sur les Méthodes de Calcul Scientifique et Technique, Versailles, 10-14 déc. 1974. Zbl0441.76092
- [49] R. TEMAM, A nonlinear eigenvalue problem : the shape at equilibrium of a confined plasma, Arch. Rat. Mech. Anal., 60 (1975), pp. 51-73. Zbl0328.35069MR412637
- [50] R. TEMAM, Remarks on a free boundary problem arising in plasma physics, Comm. P.D.E., 2 (1977), pp. 563-585. Zbl0355.35023MR602544
- [51] B. TURKINGTON, Inviscid flows with vorticity, In Proceedings of the Montecatini Conference on Free Boundary Problems, June 1981. To appear.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.