A numerical study of some questions in vortex rings theory

Henri Berestycki; Enrique Fernandez Cara; Roland Glowinski

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1984)

  • Volume: 18, Issue: 1, page 7-85
  • ISSN: 0764-583X

How to cite

top

Berestycki, Henri, Fernandez Cara, Enrique, and Glowinski, Roland. "A numerical study of some questions in vortex rings theory." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 18.1 (1984): 7-85. <http://eudml.org/doc/193425>.

@article{Berestycki1984,
author = {Berestycki, Henri, Fernandez Cara, Enrique, Glowinski, Roland},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {axisymmetric vortex rings; ideal fluid; bounded domain; convergence of a finite element method; variable mesh procedure; free vortex velocity; free flux parameter},
language = {eng},
number = {1},
pages = {7-85},
publisher = {Dunod},
title = {A numerical study of some questions in vortex rings theory},
url = {http://eudml.org/doc/193425},
volume = {18},
year = {1984},
}

TY - JOUR
AU - Berestycki, Henri
AU - Fernandez Cara, Enrique
AU - Glowinski, Roland
TI - A numerical study of some questions in vortex rings theory
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1984
PB - Dunod
VL - 18
IS - 1
SP - 7
EP - 85
LA - eng
KW - axisymmetric vortex rings; ideal fluid; bounded domain; convergence of a finite element method; variable mesh procedure; free vortex velocity; free flux parameter
UR - http://eudml.org/doc/193425
ER -

References

top
  1. [1] A. AMBROSETTI and G. MANCINI, to appear. 
  2. [2] A. AMBROSETTI and G. MANCINI, Remarks on some free boundary problems, In Recent Contributions to Nonlinear Partial Differential Equations. H. Berestycki and H. Brézis éd. Pitman, London, 1981. Zbl0477.35084MR639743
  3. [3] J. F. G. AUCHMUTY and R. BEALS, Variational solutions of some nonlinear free boundary problems, Arch. Rat. Mech. Anal. 43 (1971), pp. 255-271. Zbl0225.49013MR337260
  4. [4] J. F. G. AUCHMUTY and T. B. BENJAMIN, Rearrangement existence proofs for vortex rings, In préparation. 
  5. [5] P. BENILAN and H. BREZIS, Nonlinear problems related to the Thomas-Fermi equation, à paraître Zbl1150.35406
  6. [6] T. B. BENJAMIN, The alliance of practical and analytic insights into the nonlinear problems of fluid mechanics, in Applications of Methods of Functional Analysis to Problems of Mechanics, pp. 8-29. Lecture Notes in Math. N° 503. Springer-Verlag, New York, 1976. Zbl0369.76048MR671099
  7. [7] H. BERESTYCKI, Thèse de Doctorat d'État ès-Sciences, Univ. P. et M. Curie (Paris VI), 1980. 
  8. [8] H. BERESTYCKI, Some free boundary problems in plasma physics and fluid mechanics, In Applications of Nonlinear Analysis to the Physical Sciences. H. Amann, N. Bazley and K. Kirchgassner ed. Pitman, London 1981. Zbl0503.76127MR659699
  9. [9] H. BERESTYCKI, Quelques questions à la théorie des tourbillons stationnaires dans un fluide idéal, J. Math. Pures Appl., to appear. 
  10. [10] H. BERESTYCKI and H. BREZIS, Sur certains problèmes de frontière libre, Compte Rendus Acad. Se. Paris, série A, 283 (1976), pp. 1091-1094. Zbl0342.35014MR427812
  11. [11] H. BERESTYCKI and H. BREZIS, On a free boundary problem arising in plasma physics, Nonlinear Analysis, 4 (1980), pp. 415-436. Zbl0437.35032MR574364
  12. [12] H. BERESTYCKI and P. L. LIONS, A direct variational approach to the global theory of vortex rings in an ideal fluid, To appear. 
  13. [13] H. BERESTYCKI and C. STUART, Sur des méthodes itératives pour la résolution de certains problèmes de valeurs propres non linéaires, Note C.R.A.S., to appear. 
  14. [14] H. BERESTYCKI and C. STUART, Some itérative schemes for nonlinear eigenvalue problems, To appear. 
  15. [15] M. S. BERGER and L. E. FRAENKEL, Nonlinear desingularization in certain free-boundary problems, Comra. Math. Phys. 77 (1980), pp. 149-172. Zbl0454.35087MR589430
  16. [16] N. BOURBAKI, Elément de Mathématiques : Livre VI, Intégration. Actualités Scient. Ind. Hermann, Paris 1963-67. 
  17. [17] H. BREZIS, Some variational problems of the Thomas-Fermi type, In Variational Inequalities. Cottle, Gianessi and Lions éd., J. Wiley and Sons, New York 1980. Zbl0643.35108MR578739
  18. [18] H. BREZIS, R. BENGURIA and F. H. LIEB, The Thomas-Fermi Von Weizacker theory ofatoms and molécules, To appear in Comm. Math. Phys. Zbl0478.49035MR612246
  19. [19] J. P. CHRISTIANSEN and N. J. ZABUSKY, Instability, coalescence and fission offinit e area vortex structures, J. Fluid Mech., 61 (1973), pp.219-243. Zbl0266.76039
  20. [20] P. G. CIARLET, The Finite Element Method for Elliptic Problem. North-Holland, Amsterdam, 1978. Zbl0383.65058MR520174
  21. [21] P G CIARLET and P A RAVIAT, Maximum pnnciple and uniform convergence for the finite element method, Computer Methods in Applied Mechanics and Engineering, 2 (1973), pp 17-31 Zbl0251.65069MR375802
  22. [22] L COLLATZ, Functional Analysis and Numencal Mathematics, Academic Press, New York, 1966 Zbl0148.39002MR205126
  23. [23] G S DEEM and N J ZABUSKY, Vortex waves statwnary V-vortex waves , Phys Rev Letters, 40 (1978), pp 859-862 e 
  24. [24] M J ESTEBAN, Thèse de Doctorat de 3e Cycle, Univ P et M Curie (Paris VI), 1981 
  25. [25] M J ESTEBAN and P L LIONS, To appear 
  26. [26] E FERNANDEZ CARA, Méthodes numériques pour des problèmes nonlinéaires apparaissant dans la théorie des tourbillons stationnaires d'un fluide idéal, Rapport de Recherche INRIA n° 39, October 1980 
  27. [27] E, FERNANDEZ CARA, To appear 
  28. [28] L E FRAENKEL and M S BERGER, On the global theory of vortex rings inanidéal fluid, Acta Math 132 (1974), pp 13-51 Zbl0282.76014MR422916
  29. [29] A FRIEDMAN and B TURKINGTON, Asymptotic estimates for an axisymmetric rotating fluid, J Functional Anal, to appear Zbl0435.35014MR578929
  30. [30] B GIDAS, NI, WEI-MING and L NIREMBERG, Symmetry and related properties via the maximum principle, Comm Math Phys 68 (1979), pp 209-243 Zbl0425.35020MR544879
  31. [31] R GLOWINSKI, Numencal Methods for Nonlinear Variational Problems, 2nd édition To appear Zbl0536.65054
  32. [32] J W KITCHEN, Concerning the convergence of iterates tofixed points, Stud Math 27 (1966), pp 247-249 Zbl0143.16601MR200759
  33. [33] H LAMB, Hydrodynamics (6th ed) Cambridge, 1932 Zbl0828.01012JFM58.1298.04
  34. [34] L LICHTENSTEIN, Uber einige existenz probleme der Hydrodynamik, Math Z , 23 (1925), pp 89-154 Zbl51.0658.01MR1544733JFM51.0658.01
  35. [35] L LICHTENSTEIN, Grundlagen der Hydrodynamik, Sprmger-Veriag, Berlin 1929 
  36. [36] E H LIEB and B SIMON, The Thomas-Fermi theory of atoms, molecules and solids Advances in Math , 23 (1977), pp 22-116 1 3 Zbl0938.81568MR428944
  37. [37] P L LIONS, Mimmization problems in L 1 ( R 3 ) and applications to free boundary problems, To appear Zbl0467.49028
  38. [38] P LIONS, Minimization problems in L 1 ( R 3 ) , To appear Zbl0464.49019
  39. [39] NI, WEI-MING, On the existence of global vortex rings, To appear Zbl0457.76020MR583638
  40. [40] J NORBURY, Steady planar vortex pairs inan idéal fluid, Comm Pure Appl Math , 28 (1975), pp 679-700 Zbl0338.76015MR399645
  41. [41] J NORBURY, A steady vortex ring close to Hill's spherical vortex, Proc Camb Phil Soc , 72 (1972), pp 253-284 Zbl0256.76016MR302044
  42. [42] J NORBURY, A family of steady vortex rings, J Fluid Mech ,57 (1973), pp 417-431 Zbl0254.76018
  43. [43] R T PIERREHUMBERT, A family of steady translating vortex pairs with distnbuted vorticity, J Fluid Mech, 99 (1980), pp 129-144 Zbl0473.76034
  44. [44] J P PUEL, Sur un problème de valeur propre non linéaire et de frontière libre, Compte Rendus Ac Sc Paris, série A, 284 (1977), pp 861-863 Zbl0362.35024MR436755
  45. [45] P G SAFFMAN, The velocity of vortex rings, Studies in Appl Math , 49 (1970), pp 371-379 Zbl0224.76032
  46. [46] P G SAFFMAN, Dynamics of vorticity, J Fluid Mech , 106 (1981), pp 49-58 Zbl0465.76020
  47. [47] P G SAFFMAN and J C SCHATZMAN, Properties of a vortex street of finite vortices, To appear Zbl0484.76032MR632900
  48. [48] M. SERMANGE, Etude numérique des bifurcations et de la stabilité des solutions des équations de Grad-Shafranov. In IVe Colloque International sur les Méthodes de Calcul Scientifique et Technique, Versailles, 10-14 déc. 1974. Zbl0441.76092
  49. [49] R. TEMAM, A nonlinear eigenvalue problem : the shape at equilibrium of a confined plasma, Arch. Rat. Mech. Anal., 60 (1975), pp. 51-73. Zbl0328.35069MR412637
  50. [50] R. TEMAM, Remarks on a free boundary problem arising in plasma physics, Comm. P.D.E., 2 (1977), pp. 563-585. Zbl0355.35023MR602544
  51. [51] B. TURKINGTON, Inviscid flows with vorticity, In Proceedings of the Montecatini Conference on Free Boundary Problems, June 1981. To appear. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.