External approximation of eigenvalue problems in Banach spaces

Teresa Regińska

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1984)

  • Volume: 18, Issue: 2, page 161-174
  • ISSN: 0764-583X

How to cite

top

Regińska, Teresa. "External approximation of eigenvalue problems in Banach spaces." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 18.2 (1984): 161-174. <http://eudml.org/doc/193430>.

@article{Regińska1984,
author = {Regińska, Teresa},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {eigenvalue problem; linear bounded operator; Banach space; external approximation; strong stability},
language = {eng},
number = {2},
pages = {161-174},
publisher = {Dunod},
title = {External approximation of eigenvalue problems in Banach spaces},
url = {http://eudml.org/doc/193430},
volume = {18},
year = {1984},
}

TY - JOUR
AU - Regińska, Teresa
TI - External approximation of eigenvalue problems in Banach spaces
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1984
PB - Dunod
VL - 18
IS - 2
SP - 161
EP - 174
LA - eng
KW - eigenvalue problem; linear bounded operator; Banach space; external approximation; strong stability
UR - http://eudml.org/doc/193430
ER -

References

top
  1. 1. R. D. BROWN, Convergence of approximation methods for eigenvalues of completely continuons quadratic forms, Rocky Mt. J. of Math. 10, No. 1, 1980, pp. 199-215. Zbl0445.49043MR573871
  2. 2. F. CHATELIN, The spectral approximation of linear operators with applications to the computation of eigenelements of differential and integral operators, SIAM Review, 23 No. 4, 1981, pp. 495-522. Zbl0472.65048MR636082
  3. 3. F. CHATELIN, J. LEMORDANT, Error bounds in the approximation of eigenvalues of differential and integral operators, J. Math. Anal. Appl. 62, No. 2, 1978, pp. 257-271. Zbl0391.65023MR483398
  4. 4. F. CHATELIN, Convergence of approximation methods to compute eigenelements of linear operators, SIAM J. Numer. Anal. 10, No. 5, 1973, pp. 939-948. Zbl0266.65048MR349004
  5. 5. J. DESCLOUX, N. NASSIF, J. RAPPAZ, On spectral approximation , Part 1 : The problem of convergence, Part 2 : Error estimates for the Galerkin method, RAIRO Anal. Numer. 12, 1978, pp. 97-119. Zbl0393.65024MR483400
  6. 6. R. GLOWINSKI, J. L. LIONS, R. TRÉMOLIÈRES, Numerical analysis of variational inequalities, 1981. Zbl0463.65046MR635927
  7. 7. T. KATO, Perturbation theory for linear operators, Springer Verlag, Berlin, 1966. Zbl0148.12601MR203473
  8. 8. T. REGINSKA, Convergence of approximation methods for eigenvalue problems for two forms, to appear. Zbl0584.65033MR772268
  9. 9. T. REGINSKA, Eigenvalue approximation, Computational Mathematics, Banach Center Publications. Zbl0583.65035
  10. 10. F. STUMMEL, Diskrete Konvergenz linearer operatoren, I Math. Ann. 190, 1970, 45-92 ; II Math. Z. 120, 1971, pp. 231-264. Zbl0203.45301MR291870
  11. 11. R. TEMAM, Numerical analysis, 1973. Zbl0261.65001
  12. 12. H. F. WEINBERGER, Variational methods for eigenvalue approximation, Reg. Conf. Series in Appl. Math. 15, 1974. Zbl0296.49033MR400004

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.