On spectral approximation. Part 1. The problem of convergence

Jean Descloux; Nabil Nassif; Jacques Rappaz

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1978)

  • Volume: 12, Issue: 2, page 97-112
  • ISSN: 0764-583X

How to cite

top

Descloux, Jean, Nassif, Nabil, and Rappaz, Jacques. "On spectral approximation. Part 1. The problem of convergence." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 12.2 (1978): 97-112. <http://eudml.org/doc/193319>.

@article{Descloux1978,
author = {Descloux, Jean, Nassif, Nabil, Rappaz, Jacques},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Error Estimates; Galerkin Method; Linear Operator in a Banach Space; Spectral Approximation; Eigenvalue Approximations; Problem of Convergence},
language = {eng},
number = {2},
pages = {97-112},
publisher = {Dunod},
title = {On spectral approximation. Part 1. The problem of convergence},
url = {http://eudml.org/doc/193319},
volume = {12},
year = {1978},
}

TY - JOUR
AU - Descloux, Jean
AU - Nassif, Nabil
AU - Rappaz, Jacques
TI - On spectral approximation. Part 1. The problem of convergence
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1978
PB - Dunod
VL - 12
IS - 2
SP - 97
EP - 112
LA - eng
KW - Error Estimates; Galerkin Method; Linear Operator in a Banach Space; Spectral Approximation; Eigenvalue Approximations; Problem of Convergence
UR - http://eudml.org/doc/193319
ER -

References

top
  1. 1. P. M. ANSELONE, Collectively Compact Operator Approximation theory, Prentice-Hall, 1971. Zbl0228.47001MR443383
  2. 2. J. DESCLOUX, Two Basic Properties of Finite Elements, Rapport, Département de Mathématiques, E.P.F.L., 1973. Zbl0331.65074
  3. 3. J. DESCLOUX, N. NASSIF and J. RAPPAZ, Spectral Approximations with Error Bounds for Non Compact Operators, Rapport, Département de Mathématiques, E.P.F.L., 1977. Zbl0361.65052
  4. 4. J. DESCLOUX, N. NASSIF and J. RAPPAZ, Various Results on Spectral Approximation, Rapport, Département de Mathématiques, E.P.F.L., 1977. Zbl0361.65052
  5. 5. T. KATO, Perturbation Theory of Linear Operators, Springer-Verlag, 1966. Zbl0148.12601MR203473
  6. 6. J. NITSCHE and A. SCHATZ, On Local Approximation properties of L2-Projection on Spline-Subspaces, Applicable analysis, Vol. 2, 1972, pp. 161-168. Zbl0239.41007MR397268
  7. 7. J. RAPPAZ, Approximation of the Spectrum of a Non-Compact Operator Given by the Magnetohydrodynamic Stability of a Plasma, Numer. Math., Vol. 28, 1977, pp. 15-24. Zbl0341.65044MR474800
  8. 8. F. RIESZ and B. Z. NAGY, Leçons d'analyse fonctionnelle, Gauthier-Villars, Paris, 6e éd., 1972. Zbl0064.35404
  9. 9. G. M. VAINIKKO, The Compact Approximation Principle in the Theory of Approximation Methods, U.S.S.R. Computational Mathematics and Mathematical Physics, Vol. 9, No. 4, 1969, pp. 1-32. Zbl0236.65038MR257771
  10. 10. G. M. VAINIKKO, A Difference Method for Ordinary Differential Equations,U.S.S.R. Computational Mathematics and Mathematical Physics, Vol. 9,No. 5, 1969. Zbl0233.34021MR280027

Citations in EuDML Documents

top
  1. Teresa Regińska, External approximation of eigenvalue problems in Banach spaces
  2. M. Vanmaele, R. Van Keer, An operator method for a numerical quadrature finite element approximation for a class of second-order elliptic eigenvalue problems in composite structures
  3. Carlo Lovadina, David Mora, Rodolfo Rodríguez, A locking-free finite element method for the buckling problem of a non-homogeneous Timoshenko beam
  4. Carlo Lovadina, David Mora, Rodolfo Rodríguez, A locking-free finite element method for the buckling problem of a non-homogeneous Timoshenko beam
  5. Daniele Boffi, Lucia Gastaldi, Edge finite elements for the approximation of Maxwell resolvent operator
  6. Daniele Boffi, Lucia Gastaldi, Edge finite elements for the approximation of Maxwell resolvent operator

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.