On spectral approximation. Part 1. The problem of convergence
Jean Descloux; Nabil Nassif; Jacques Rappaz
- Volume: 12, Issue: 2, page 97-112
- ISSN: 0764-583X
Access Full Article
topHow to cite
topDescloux, Jean, Nassif, Nabil, and Rappaz, Jacques. "On spectral approximation. Part 1. The problem of convergence." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 12.2 (1978): 97-112. <http://eudml.org/doc/193319>.
@article{Descloux1978,
author = {Descloux, Jean, Nassif, Nabil, Rappaz, Jacques},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Error Estimates; Galerkin Method; Linear Operator in a Banach Space; Spectral Approximation; Eigenvalue Approximations; Problem of Convergence},
language = {eng},
number = {2},
pages = {97-112},
publisher = {Dunod},
title = {On spectral approximation. Part 1. The problem of convergence},
url = {http://eudml.org/doc/193319},
volume = {12},
year = {1978},
}
TY - JOUR
AU - Descloux, Jean
AU - Nassif, Nabil
AU - Rappaz, Jacques
TI - On spectral approximation. Part 1. The problem of convergence
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1978
PB - Dunod
VL - 12
IS - 2
SP - 97
EP - 112
LA - eng
KW - Error Estimates; Galerkin Method; Linear Operator in a Banach Space; Spectral Approximation; Eigenvalue Approximations; Problem of Convergence
UR - http://eudml.org/doc/193319
ER -
References
top- 1. P. M. ANSELONE, Collectively Compact Operator Approximation theory, Prentice-Hall, 1971. Zbl0228.47001MR443383
- 2. J. DESCLOUX, Two Basic Properties of Finite Elements, Rapport, Département de Mathématiques, E.P.F.L., 1973. Zbl0331.65074
- 3. J. DESCLOUX, N. NASSIF and J. RAPPAZ, Spectral Approximations with Error Bounds for Non Compact Operators, Rapport, Département de Mathématiques, E.P.F.L., 1977. Zbl0361.65052
- 4. J. DESCLOUX, N. NASSIF and J. RAPPAZ, Various Results on Spectral Approximation, Rapport, Département de Mathématiques, E.P.F.L., 1977. Zbl0361.65052
- 5. T. KATO, Perturbation Theory of Linear Operators, Springer-Verlag, 1966. Zbl0148.12601MR203473
- 6. J. NITSCHE and A. SCHATZ, On Local Approximation properties of L2-Projection on Spline-Subspaces, Applicable analysis, Vol. 2, 1972, pp. 161-168. Zbl0239.41007MR397268
- 7. J. RAPPAZ, Approximation of the Spectrum of a Non-Compact Operator Given by the Magnetohydrodynamic Stability of a Plasma, Numer. Math., Vol. 28, 1977, pp. 15-24. Zbl0341.65044MR474800
- 8. F. RIESZ and B. Z. NAGY, Leçons d'analyse fonctionnelle, Gauthier-Villars, Paris, 6e éd., 1972. Zbl0064.35404
- 9. G. M. VAINIKKO, The Compact Approximation Principle in the Theory of Approximation Methods, U.S.S.R. Computational Mathematics and Mathematical Physics, Vol. 9, No. 4, 1969, pp. 1-32. Zbl0236.65038MR257771
- 10. G. M. VAINIKKO, A Difference Method for Ordinary Differential Equations,U.S.S.R. Computational Mathematics and Mathematical Physics, Vol. 9,No. 5, 1969. Zbl0233.34021MR280027
Citations in EuDML Documents
top- Teresa Regińska, External approximation of eigenvalue problems in Banach spaces
- M. Vanmaele, R. Van Keer, An operator method for a numerical quadrature finite element approximation for a class of second-order elliptic eigenvalue problems in composite structures
- Carlo Lovadina, David Mora, Rodolfo Rodríguez, A locking-free finite element method for the buckling problem of a non-homogeneous Timoshenko beam
- Carlo Lovadina, David Mora, Rodolfo Rodríguez, A locking-free finite element method for the buckling problem of a non-homogeneous Timoshenko beam
- Daniele Boffi, Lucia Gastaldi, Edge finite elements for the approximation of Maxwell resolvent operator
- Daniele Boffi, Lucia Gastaldi, Edge finite elements for the approximation of Maxwell resolvent operator
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.