On the order of pointwise convergence of some boundary element methods. Part I. Operators of negative and zero order
- Volume: 19, Issue: 1, page 65-87
- ISSN: 0764-583X
Access Full Article
topHow to cite
topRannacher, R., and Wendland, W. L.. "On the order of pointwise convergence of some boundary element methods. Part I. Operators of negative and zero order." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 19.1 (1985): 65-87. <http://eudml.org/doc/193442>.
@article{Rannacher1985,
author = {Rannacher, R., Wendland, W. L.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {boundary integral equations; strongly elliptic pseudodifferential equations; finite element Galerkin method; convergence; discrete Green functions; Garding's inequality},
language = {eng},
number = {1},
pages = {65-87},
publisher = {Dunod},
title = {On the order of pointwise convergence of some boundary element methods. Part I. Operators of negative and zero order},
url = {http://eudml.org/doc/193442},
volume = {19},
year = {1985},
}
TY - JOUR
AU - Rannacher, R.
AU - Wendland, W. L.
TI - On the order of pointwise convergence of some boundary element methods. Part I. Operators of negative and zero order
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1985
PB - Dunod
VL - 19
IS - 1
SP - 65
EP - 87
LA - eng
KW - boundary integral equations; strongly elliptic pseudodifferential equations; finite element Galerkin method; convergence; discrete Green functions; Garding's inequality
UR - http://eudml.org/doc/193442
ER -
References
top- [1] M S AGRANOVICH, Spectral properties of diffraction problems In The General Method of Natural Vibrations in Diffraction Theory (Russian) (N N Voitovic, K Z Katzenellenbaum and A N Sivov) Izdat Nauka Moscow 1977 MR484012
- [2] D ARNOLD and W L WENDLANDOn the asymptotic convergence of collocation methods Math Comp in print (1983) Zbl0541.65075MR717691
- [3] J P AUBIN, Approximation of Elliptic Boundary-Value Problems Wiley-Interscience New York 1972 Zbl0248.65063MR478662
- [4] I BABUSKA and A K Aziz, The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (A K Aziz ed ) pp 3-359, Academic Press, New York 1972 Zbl0259.00014MR347104
- [5] T DUPONT and R SCOTT, Constructive polynomial approximation In « Recent Advances in Numerical Analysis » (C de Boor ed ), Proc at MRC Madison Wisconsin, May 1978 Zbl0456.65003
- [6] G I ESKIN, Boundary Value Problems for Elliptic Pseudodifferential Equations Trans Math Mon Amer Math Soc Providence, Rhode Island 1981 1981 Zbl0458.35002MR623608
- [7] J FREHSE and R RANNACHEREine -Fehlerabschatzung fur diskrete Grundlosungen in der Methode der finiten ElementeIn « Finite Elemente » Tagungsband Bonn Math Schr 89, 92-114 (1976) Zbl0359.65093MR471370
- [8] L HORMANDER, Pseudo-differential operators and non-elliptic boundary problems Annals Math 83, 129-209 (1966) Zbl0132.07402MR233064
- [9] L HORMANDER, Fourier intégral operators I Acta mathematica 127, 79-183 (1971) Zbl0212.46601MR388463
- [10] G C HSIAO, P KOPP and W L WENDLAND, A Galerkin collocation method for some integral equations of the first kind Computing 25, 89-130 (1980) Zbl0419.65088MR620387
- [11] G C HSIAO and W L WENDLAND, Afinite element method for some integral equations of the first kind J Math Anal Appl 58, 449-481 (1977) Zbl0352.45016MR461963
- [12] G C HSIAO and W L WENDLANDThe Aubin-Nitsche lemma for integral equations Journal of Integral Equations 3, 299-315 (1981) Zbl0478.45004MR634453
- [13] G C HSIAO and W L WENDLANDSuper-approximation for boundary integral methods In Advances in Computer Methods for Partial Differential Equations IV (ed R Vichnevetsky, R S Stepleman), pp 200-206, IMACS, Dept Comp Sc Rutgers Univ New Brunswick 1981
- [14] E MARTENSENPotentialtheorie B G Teubner Stuttgart1968 Zbl0174.42602MR247116
- [15] S G MICHLIN, Vorlesungen uber lineare Integralgleichungen Verl der Wiss Berlin1962 MR141959
- [16] F NATTERER, Uber die punktweise Konvergenz finiter Elemente Numer Math 25 67-77 (1975) Zbl0331.65073MR474884
- [17] J C NEDELEC, Approximation des équations integrales en mecanique et en physique Lecture Notes, Centre de Math Appl Ecole Polytechnique, 91128 Palaiseau, France, 1977
- [18] J C NEDELEC and J PLANCHARD, Une methode variationnelle d'elements finis pour la resolution numérique d un probleme exterieur des R3 Revue Franc Automatique, Inf Rech Oper R 3, 105-129 (1973) Zbl0277.65074MR424022
- [19] J A NITSCHE , L-convergence of finite element approximation Second Conference on Finite Elements, Rennes, France, 1975 Zbl0362.65088MR568857
- [20] P M PRENTER, Splines and Variational Methods John Wiley & Sons, New York 1975 Zbl0344.65044MR483270
- [21] R RANNACHER, Punktweise Konvergenz der Methode der finiten Elemente beim Plattenproblem Manuscripta math 19, 401-416(1976) Zbl0383.65061MR423841
- [22] J SARANEN and W L WENDLAND, One the asymptotic convergence of collocation methods with spline functions of even degree, to appear in Math Comp 1985 Zbl0623.65145MR790646
- [23] A H SCHATZ and L B WAHLBIN, Maximum norm error estimates in the finite element method for Poisson equation on plane domains with corners Math Comp 32, 73-109 (1978) Zbl0382.65058MR502065
- [24] R SCOTTOptimal -estimates for the finite element method on irregular meshes Math Comp 30, 681-697 (1976) Zbl0349.65060MR436617
- [25] E STEPHAN, Solution procedures for interface problems in acoustics and electro-magnetics In Theoretical Acoustics and Numerical Techniques (ed P Filippi), CISM Courses 277, Springer-Verlag, Wien, New York, 291-348 (1983) Zbl0578.76078MR762832
- [26] E STEPHAN and W L WENDLAND, Remarks to Galerkin and least squares methods with finite elements for general elliptic problem Manuscripta Geodaetica 1, 93-123 (1976) and Springer Lecture Notes m Math 564, 461-471 (1976) Zbl0353.65067MR520343
- [27] G STRANG, Approximation in the finite element method Num Math 19, (1972) Zbl0221.65174MR305547
- [28] M TAYLOR, Pseudodifferential Operators Princeton Univ Press, Princeton N J 1981 Zbl0453.47026MR618463
- [29] F TRÊVES, Pseudodifferential Operators Plenum Press New York, London 1980 MR597144
- [30] W L WENDLAND, On applications and the convergence of boundary integral methods In Treatment of Integral Equations by Numerical Methods (ed T H Baker G F Miller), pp 463-476, Academic Press, London 1982 Zbl0561.65085MR755378
- [31] W L WENDLANDBoundary element methods and their asymptotic convergence In Theoretical Acoustics and Numerical Techniques (ed P Filippi), CISM Courses 277 Springer-Verlag, Wien, New York, 135 216 (1983) Zbl0618.65109MR762829
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.