Un procédé d'approximation d'une fonction convexe lipschitzienne et de ses singularités

Bernard Lacolle

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1985)

  • Volume: 19, Issue: 2, page 285-313
  • ISSN: 0764-583X

How to cite

top

Lacolle, Bernard. "Un procédé d'approximation d'une fonction convexe lipschitzienne et de ses singularités." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 19.2 (1985): 285-313. <http://eudml.org/doc/193449>.

@article{Lacolle1985,
author = {Lacolle, Bernard},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {convex functions; real singularities; logarithms of polynomials; numerical experiments},
language = {fre},
number = {2},
pages = {285-313},
publisher = {Dunod},
title = {Un procédé d'approximation d'une fonction convexe lipschitzienne et de ses singularités},
url = {http://eudml.org/doc/193449},
volume = {19},
year = {1985},
}

TY - JOUR
AU - Lacolle, Bernard
TI - Un procédé d'approximation d'une fonction convexe lipschitzienne et de ses singularités
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1985
PB - Dunod
VL - 19
IS - 2
SP - 285
EP - 313
LA - fre
KW - convex functions; real singularities; logarithms of polynomials; numerical experiments
UR - http://eudml.org/doc/193449
ER -

References

top
  1. [1] M E FISHER, Thenature of cntical points Lecture m theoretical physics 7c Boulder University of Colorado Press (1964) 
  2. [2] P HENRICI, Applied and computational complex analysis, Vol II, J Wiley and Sons Zbl0363.30001MR372162
  3. [3] B LACOLLE, Algebraic method for the compuîatwn of the pai titwn functions of spin glasses and numerical stydy of the distribution of zeros Critical phenomena in Physics, Biology, Chemistry andother fields » Springer Series m Synergeùcs (1980) 
  4. [4] B LACOLLE, otentiel logarithmique et transition de phase, S A N G n° 338 IMAG 
  5. [5] T D LEE, C N YANG, Statistique theory of équation of state and phase transition II Lattice gas andIsmg Model Physical Review, vol 87, number 3, August 1952 Zbl0048.43401
  6. [6] C M MARLEMesures et probabilités Hermann Zbl0306.28001MR486378
  7. [7] S ONO, Y KARAKI, C KAWABATA, Statistical thermodynamics of fimte IsingModel I Journal of Phys Soc of Japan5 Vol 25,n° 1 (1968) 
  8. [8] H POINCARE, Lepotentiel Newtomen 
  9. [9] G POLYA, G SZEGO, Problems and theorems in Analysis Vol I, Springer-Verlag Zbl0338.00001MR396134
  10. [10] G POLYA, G SZEGO, Problems and theorems in Analysis Vol I, Springer-Verlag Zbl0338.00001MR396134
  11. [11] M SUZUKI, C KAWABATA, S ONO, Y KARAKI, M IKEDA, Statistical thermo-dynamics of finite Ising Model II Journal of Phys Soc of Japan Vol 29, n°4 (1970) 
  12. [12] A E TAYLOR, General theory of functions and Integration Blaisdell Publishmg Zbl0135.11301
  13. [13] G VALIRON, Theone des fonctions Masson (1966) Zbl0028.20801
  14. [14] C N YANG, T D LEE, Statistical theory of équation of state and phase transition I theory of condensation Physical Revieuw, Volume 87, n° 3, August 1952 Zbl0048.43305MR53028

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.