A mixed-Lagrange multiplier finite element method for the polyharmonic equation
James H. Bramble; Richard S. Falk
- Volume: 19, Issue: 4, page 519-557
- ISSN: 0764-583X
Access Full Article
topHow to cite
topBramble, James H., and Falk, Richard S.. "A mixed-Lagrange multiplier finite element method for the polyharmonic equation." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 19.4 (1985): 519-557. <http://eudml.org/doc/193458>.
@article{Bramble1985,
author = {Bramble, James H., Falk, Richard S.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {mixed methods; error estimates; polyharmonic equation; conforming finite element method; Galerkin method; conjugate gradient method; Lagrange multipliers},
language = {eng},
number = {4},
pages = {519-557},
publisher = {Dunod},
title = {A mixed-Lagrange multiplier finite element method for the polyharmonic equation},
url = {http://eudml.org/doc/193458},
volume = {19},
year = {1985},
}
TY - JOUR
AU - Bramble, James H.
AU - Falk, Richard S.
TI - A mixed-Lagrange multiplier finite element method for the polyharmonic equation
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1985
PB - Dunod
VL - 19
IS - 4
SP - 519
EP - 557
LA - eng
KW - mixed methods; error estimates; polyharmonic equation; conforming finite element method; Galerkin method; conjugate gradient method; Lagrange multipliers
UR - http://eudml.org/doc/193458
ER -
References
top- [1] O. AXELSSON, Solution of linear Systems of équations : itérative methods. Sparse Matrix Techniques, V. A. Barker (editor), Lecture Notes in Mathematics 572, Springer Verlag, 1977. Zbl0354.65021MR448834
- [2] I. BABUSKA, The finite element method with Lagrangian multipliers, Numer. Math., 20 (1973), pp. 179-192. Zbl0258.65108MR359352
- [3] I. BABUSKA and A. K. AZIZ, Survey lectures on the mathematical foundations of the finite element method, The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, A. K. Aziz (editor), Academic Press, New York, 1972. Zbl0268.65052MR421106
- [4] J. H. BRAMBLE, The Lagrange multiplier method for Dirichlet's Problem, Math.Comp., 37 (1981), pp. 1-11 Zbl0477.65077MR616356
- [5] J. H. BRAMBLE and R. S. FALK, TWO mixed finite element methods for the simply supported plate problem, R.A.I.R.O., Analyse numérique, 17 (1983), pp. 337-384. Zbl0536.73063MR713765
- [6] J . H . BRAMBLE and J. E. OSBORN, Rate of convergence estimates for non-selfadjoint eigenvalue approximations. Math. Comp.. 27 (1973). pp. 525-549 Zbl0305.65064MR366029
- [7] J. H. BRAMBLE and J. E. PASCIAK, A new computational approach for the linearized scalar potential formulation of the magnetostatic field problem, EEE Transactions on Magnetics, Vol Mag-18, (1982), pp. 357-361.
- [8] J. H. BRAMBLE and L. R. SCOTT, Simultaneous approximation in scales of Banach spaces, Math. Comp., 32 (1978), pp.947-954. Zbl0404.41005MR501990
- [9] P. G. CIARLET and P.A. RAVIART, A mixed finite element method for the biharmonic equation, Symposium on Mathematical Aspects of Finite Elements in Partial Differential Equations, C. DeBoor, Ed., Academic Press, New York, 1974, pp. 125-143. Zbl0337.65058MR657977
- [10] P. G. CIARLET and R. GLOWINSKI, Dual itérative techniques for solving a finite element approximation of the biharmonic equation, Comput. Methods Appl. Mech. Engrg., 5 (1975), pp.277-295. Zbl0305.65068MR373321
- [11] R. S., FALK, Approximation of the biharmonic equation by a mixed finite element method, SIAM J. Numer. Anal., 15 (1978), pp.556-567. Zbl0383.65059MR478665
- [12] R. GLOWINSKI and O. PIRONNEAU, Numerical methods for the first biharmonic equation and for the two-dimensional Stokes problem, SIAM Review, 21 (1979), pp. 167-212. Zbl0427.65073MR524511
- [13] J. L. LIONS and E. MAGENES, Problèmes Aux Limites non Homogènes et Applications, Vol 1, Dunod, Paris, 1968. Zbl0165.10801MR247243
- [14] M. SCHECHTER, On estimates andregularity II, Math. Scand., 13 (1963), pp. 47- Zbl0131.09505MR188616
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.