Spectral perturbations in linear viscoelasticity of the Boltzmann type

J. Cainzos; M. Lobo-Hidalgo

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1985)

  • Volume: 19, Issue: 4, page 559-572
  • ISSN: 0764-583X

How to cite

top

Cainzos, J., and Lobo-Hidalgo, M.. "Spectral perturbations in linear viscoelasticity of the Boltzmann type." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 19.4 (1985): 559-572. <http://eudml.org/doc/193459>.

@article{Cainzos1985,
author = {Cainzos, J., Lobo-Hidalgo, M.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {spectral perturbations; algebroid singularity; vibration frequencies; linear viscoelastic materials of Boltzmann type; second order systems; elliptic operators; existence of analytic branches; abstract evolution equation; reduction to a finite dimensional problem; Weierstrass preparation theorem},
language = {eng},
number = {4},
pages = {559-572},
publisher = {Dunod},
title = {Spectral perturbations in linear viscoelasticity of the Boltzmann type},
url = {http://eudml.org/doc/193459},
volume = {19},
year = {1985},
}

TY - JOUR
AU - Cainzos, J.
AU - Lobo-Hidalgo, M.
TI - Spectral perturbations in linear viscoelasticity of the Boltzmann type
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1985
PB - Dunod
VL - 19
IS - 4
SP - 559
EP - 572
LA - eng
KW - spectral perturbations; algebroid singularity; vibration frequencies; linear viscoelastic materials of Boltzmann type; second order systems; elliptic operators; existence of analytic branches; abstract evolution equation; reduction to a finite dimensional problem; Weierstrass preparation theorem
UR - http://eudml.org/doc/193459
ER -

References

top
  1. [1] S. BOCHNER and W. T. MARTIN, Several Complex Variables, Princeton, Univ.Press, Princeton (1948). Zbl0041.05205MR27863
  2. [2] C. M. DAFERMOS, An abstract Volterra equation with application to linear viscoelasticity, J. Diff. Equations, 7 (1970), pp. 554-569. Zbl0212.45302MR259670
  3. [3] C. M. DAFERMOS, Asymptotic stability in viscoelasticity, Arch. Rat. Mech. Anal., 37 (1970), pp. 297-308. Zbl0214.24503MR281400
  4. [4] C. M. DAFERMOS, Contraction semigroups and trend to equilibrium in continuum mechanics, Lect. Notes Math., 503, Springer, Berlin (1975), pp. 295-306. Zbl0345.47032
  5. [5] T. KATO, Perturbation Theory for Linear Operators, Springer, Berlin (1966). Zbl0148.12601
  6. [6] K. KNOPP, Theory of Function, II, Dover, New York (1947). MR19722
  7. [7] M. LOBO-HIDALGO, Propriétés spectrales de certaines équations différentielles intervenant en viscoélasticité, Rend. Sem. Mat. Univ. Polit. Torino, 39 (1981), Zbl0489.73063MR660992
  8. [8] Ph. NOVERRAZ, Fonctions plurisousharmoniques et analytiques dans les espaces vectoriels topologiques complexes, Ann. Inst. Fourier, t. XIX, fasc. 2 (1970),pp. 419-493. Zbl0176.09903MR265628
  9. [9] R. OHAYON and E. SANCHEZ-PALENCIA, On the vibration problem for an elastic body surrounded by a slïghtly compressible fluid, R.A.I.R.O. Analyse Numérique,17, n° 3 (1983), pp. 311-326. Zbl0513.73055MR702140
  10. [10] E. SANCHEZ-PALENCIAFréquences de diffusion dans le problème de vibration d'un corps élastique plongé dans un fluide compressible de petite densité, C. R. Acad. Se. Paris, t. 295 (1982), pp. 197-200. Zbl0501.76062MR676397
  11. [11] N. TURBE, On two scales method for a class of integrodifferential equations appearing in viscoelasticity, Int. Jour. Engin. Sci. (1979), pp. 857-868. Zbl0412.73002MR659194

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.