Approximation of a fourth order variational inequality

M. I. Comodi

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1986)

  • Volume: 20, Issue: 1, page 5-24
  • ISSN: 0764-583X

How to cite

top

Comodi, M. I.. "Approximation of a fourth order variational inequality." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 20.1 (1986): 5-24. <http://eudml.org/doc/193470>.

@article{Comodi1986,
author = {Comodi, M. I.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Morley method; fourth order unilateral problem; bending; existence; uniqueness; non-conforming finite element; error estimates},
language = {eng},
number = {1},
pages = {5-24},
publisher = {Dunod},
title = {Approximation of a fourth order variational inequality},
url = {http://eudml.org/doc/193470},
volume = {20},
year = {1986},
}

TY - JOUR
AU - Comodi, M. I.
TI - Approximation of a fourth order variational inequality
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1986
PB - Dunod
VL - 20
IS - 1
SP - 5
EP - 24
LA - eng
KW - Morley method; fourth order unilateral problem; bending; existence; uniqueness; non-conforming finite element; error estimates
UR - http://eudml.org/doc/193470
ER -

References

top
  1. [1] R DAMS, Sobolev Spaces NewYork Academic Press 1975 Zbl0314.46030
  2. [2] D N ARNOLD, F BREZZI, Mixed and nonconforming finite element methods implementation, postprocessing and error estimates To appear on RAIRO Zbl0567.65078
  3. [3] C BAIOCCHI, A CAPELO, Disequazioni variazionali e quasivariazionali Applicazioni, a problemi di frontiera libera, Vol 1 Bologna Pitagora Editrice 1978 
  4. [4] P G CIARLET, The finite Element Method for Elliptic Problems Amsterdam North Holland Publishing Co 1978 Zbl0383.65058MR520174
  5. [5] M I COMODI, Approximation of a plate bending probleme with a boundary unilateral constraint Numer Math 47, 435-458 (1985) Zbl0581.73022MR808562
  6. [6] G DUVAUT, J L LIONS, Inequalities in Mechanics and Physics Grund Math Wiss, 219 Berlin Springer-Verlag 1967 Zbl0331.35002
  7. [7] G FICHERA, Boundary value problems of Elasticity with unilateral constraints Handbuch der Physik, Band VI a/2 Springer, Berlin (391-424) 1972 
  8. [8] C JOHNSON, A convergence estimate for an approximation of a parabolic variational inequality , SIAM J Numer Anal, 13, 599-606 (1976) Zbl0337.65055MR483545
  9. [9] D KINDERLEHRER, G STAMPACCHIA, An Introduction to Variational Inequalities and Their Applications New York Academic Press 1980 Zbl0457.35001MR567696
  10. [10] P LASCAUX, P LESAINT, Some nonconforming finite elements for the plate bending problem RAIRO Anal Num 8, 9-53 (1975 Zbl0319.73042MR423968
  11. [11] J L LIONS, E MAGENES, Problemes aux limites non Homogenes et Applications, TOME I PARIS DUNOD 1968 Zbl0165.10801
  12. [12] L S D MORLEY, The triangular equilibrium element in the solution of plate bending problems Aero Quart 19, 149-169 
  13. [13] G STRANG, G FIX, An Analysis of the Finite Element Method Englewood Cliffs, New Jersey Prentice Hall 1973 Zbl0356.65096MR443377
  14. [14] S TIMOSCHENKO, Theory of Plates and Shells New York McGraw-Hill 1959 JFM66.1049.02
  15. [15] O C ZIENKIEWICZ, The Finite Element Method in Engineering Science London McGraw-Hill 1971 Zbl0237.73071

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.