Approximation of a fourth order variational inequality

M. I. Comodi

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1986)

  • Volume: 20, Issue: 1, page 5-24
  • ISSN: 0764-583X

How to cite

top

Comodi, M. I.. "Approximation of a fourth order variational inequality." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 20.1 (1986): 5-24. <http://eudml.org/doc/193470>.

@article{Comodi1986,
author = {Comodi, M. I.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Morley method; fourth order unilateral problem; bending; existence; uniqueness; non-conforming finite element; error estimates},
language = {eng},
number = {1},
pages = {5-24},
publisher = {Dunod},
title = {Approximation of a fourth order variational inequality},
url = {http://eudml.org/doc/193470},
volume = {20},
year = {1986},
}

TY - JOUR
AU - Comodi, M. I.
TI - Approximation of a fourth order variational inequality
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1986
PB - Dunod
VL - 20
IS - 1
SP - 5
EP - 24
LA - eng
KW - Morley method; fourth order unilateral problem; bending; existence; uniqueness; non-conforming finite element; error estimates
UR - http://eudml.org/doc/193470
ER -

References

top
  1. [1] R DAMS, Sobolev Spaces NewYork Academic Press 1975 Zbl0314.46030
  2. [2] D N ARNOLD, F BREZZI, Mixed and nonconforming finite element methods implementation, postprocessing and error estimates To appear on RAIRO Zbl0567.65078
  3. [3] C BAIOCCHI, A CAPELO, Disequazioni variazionali e quasivariazionali Applicazioni, a problemi di frontiera libera, Vol 1 Bologna Pitagora Editrice 1978 
  4. [4] P G CIARLET, The finite Element Method for Elliptic Problems Amsterdam North Holland Publishing Co 1978 Zbl0383.65058MR520174
  5. [5] M I COMODI, Approximation of a plate bending probleme with a boundary unilateral constraint Numer Math 47, 435-458 (1985) Zbl0581.73022MR808562
  6. [6] G DUVAUT, J L LIONS, Inequalities in Mechanics and Physics Grund Math Wiss, 219 Berlin Springer-Verlag 1967 Zbl0331.35002
  7. [7] G FICHERA, Boundary value problems of Elasticity with unilateral constraints Handbuch der Physik, Band VI a/2 Springer, Berlin (391-424) 1972 
  8. [8] C JOHNSON, A convergence estimate for an approximation of a parabolic variational inequality , SIAM J Numer Anal, 13, 599-606 (1976) Zbl0337.65055MR483545
  9. [9] D KINDERLEHRER, G STAMPACCHIA, An Introduction to Variational Inequalities and Their Applications New York Academic Press 1980 Zbl0457.35001MR567696
  10. [10] P LASCAUX, P LESAINT, Some nonconforming finite elements for the plate bending problem RAIRO Anal Num 8, 9-53 (1975 Zbl0319.73042MR423968
  11. [11] J L LIONS, E MAGENES, Problemes aux limites non Homogenes et Applications, TOME I PARIS DUNOD 1968 Zbl0165.10801
  12. [12] L S D MORLEY, The triangular equilibrium element in the solution of plate bending problems Aero Quart 19, 149-169 
  13. [13] G STRANG, G FIX, An Analysis of the Finite Element Method Englewood Cliffs, New Jersey Prentice Hall 1973 Zbl0356.65096MR443377
  14. [14] S TIMOSCHENKO, Theory of Plates and Shells New York McGraw-Hill 1959 JFM66.1049.02
  15. [15] O C ZIENKIEWICZ, The Finite Element Method in Engineering Science London McGraw-Hill 1971 Zbl0237.73071

NotesEmbed ?

top

You must be logged in to post comments.