La méthode d'approximation de Gauss-Galerkin en filtrage non linéaire

F. Campillo

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1986)

  • Volume: 20, Issue: 2, page 203-223
  • ISSN: 0764-583X

How to cite

top

Campillo, F.. "La méthode d'approximation de Gauss-Galerkin en filtrage non linéaire." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 20.2 (1986): 203-223. <http://eudml.org/doc/193474>.

@article{Campillo1986,
author = {Campillo, F.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Gauss-Galerkin approximation; Fokker-Planck equation; nonlinear filtering problem},
language = {fre},
number = {2},
pages = {203-223},
publisher = {Dunod},
title = {La méthode d'approximation de Gauss-Galerkin en filtrage non linéaire},
url = {http://eudml.org/doc/193474},
volume = {20},
year = {1986},
}

TY - JOUR
AU - Campillo, F.
TI - La méthode d'approximation de Gauss-Galerkin en filtrage non linéaire
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1986
PB - Dunod
VL - 20
IS - 2
SP - 203
EP - 223
LA - fre
KW - Gauss-Galerkin approximation; Fokker-Planck equation; nonlinear filtering problem
UR - http://eudml.org/doc/193474
ER -

References

top
  1. [1] P BILLINGSLEY, Probability and Measure J Wiley (1979) Zbl0411.60001MR534323
  2. [2] L BREIMAN, Probability Addison-Wesley (1968) Zbl0174.48801MR229267
  3. [3] F CAMPILLO, Filtrage et Détection de Ruptures de Processus Partiellement Observé,Thèse de Troisième Cycle, Université de Provence (1984) 
  4. [4] D A DAWSON, Galerkin approximation of nonlinear Markov processes, in Statistics & Related Topics, M Csorgo, D A Dawson, J N K Rao, A K Md Saleh (eds) North-Holland (1981) Zbl0469.60078MR665284
  5. [5] B S GARBOW, J M BOYLE, J J DONGARA & C B BOYLER, Matrix Eigen System Routines - EISPACK - Guide Extension, Lecture Notes in Computer Science (1977) Zbl0368.65020
  6. [6] W GAUTSCHI, On generating orthogonal polynomials SIAM J Sci Stat Comp ,vol 3, n° 3 (1982), 289-317 Zbl0482.65011MR667829
  7. [7] O A LADYZENSKAJA, V A SOLONNIKOV, N N URAL'CEVALinear and Quasilinear Equations of Parabole Type Amer Math Socie (1968) 
  8. [8] F LE GLAND, Estimation de Paramètres dans les Processus Stochastiques en Observation Incomplète Application a un Problème de Radio-Astronomie Thèse de Docteur-Ingénieur, Université Paris 9 (1981) 
  9. [9] E PARDOUX, Equations du filtrage non-linéaire de l'aprédiction et du lissage Stochastics, 6 (1982), 193-231 Zbl0491.93062MR665400
  10. [10] P A RAVIART, An analysis of particle methods CEME Course in Numerical Methods in Fluids Dynamics, Como, July 83, Lecture Notes in Mathematics Springer Verlag Zbl0598.76003MR802214
  11. [11] J A SHOHAT & J D TAMARKIN, The Problem of Moments Amer Math Socie (1950) Zbl0041.43302MR8438
  12. [12] D W STROOCK, S R S VARADHAN, Multidimensional Diffusion Processes Springer Verlag (1979) Zbl0426.60069MR532498
  13. [13] J C WHEELER, Modified moments and gaussian quadrature Rocky Montain J Math , 4 (1974), 287-296 Zbl0309.65009MR334466

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.