Finite element solution of a nonlinear diffusion problem with a moving boundary
- Volume: 20, Issue: 3, page 403-426
- ISSN: 0764-583X
Access Full Article
topHow to cite
topČermák, Libor, and Zlámal, Miloš. "Finite element solution of a nonlinear diffusion problem with a moving boundary." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 20.3 (1986): 403-426. <http://eudml.org/doc/193483>.
@article{Čermák1986,
author = {Čermák, Libor, Zlámal, Miloš},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {nonlinear diffusion; moving boundary; semiconductor device; finite element; Stability; error estimate; numerical results},
language = {eng},
number = {3},
pages = {403-426},
publisher = {Dunod},
title = {Finite element solution of a nonlinear diffusion problem with a moving boundary},
url = {http://eudml.org/doc/193483},
volume = {20},
year = {1986},
}
TY - JOUR
AU - Čermák, Libor
AU - Zlámal, Miloš
TI - Finite element solution of a nonlinear diffusion problem with a moving boundary
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1986
PB - Dunod
VL - 20
IS - 3
SP - 403
EP - 426
LA - eng
KW - nonlinear diffusion; moving boundary; semiconductor device; finite element; Stability; error estimate; numerical results
UR - http://eudml.org/doc/193483
ER -
References
top- 1 D J CHIN, M R KUMP and R W DUTTON, SUPRA-Stanford University Process Analysis Program, Stanford Electronics Laboratories Stanford University, Stanford, U S A , July 1981
- 2 T DUPONT, G FAIRWEATHER and J P Johnson, Three-Level Galerkin Methods for Parabolic Equations SIAM J Numer Anal 11 (1974), 392 410 Zbl0313.65107MR403259
- 3 M LEES, A priori Estimates for the Solutions of Difference Approximations to Parabolic Differential Equations Duke Math J 27 (1960), 287-311 Zbl0092.32803MR121998
- 4 C D MALDONADO, ROMANS II, A Two-Dimensional Process Simulator for Modeling and Simulation in the Design of VLSI Devices Applied Physics A31 (1983), 119-138
- 5 B R PENUMALLI, A Comprehensive Two-Dimensional VLSI Process Simulation Program BICEPS, IEEE Trans on Electron Devices 30 (1983), 986-992
- 6 M F WHEELER, A priori error estimates for Galerkin approximations to parabolic partial differential equations SIAM J Numer Anal 10 (1973), 723-759 Zbl0232.35060MR351124
- 7 M ZLAMAL, Curved Elements in the Finite Element Method I SIAM J Numer Anal 10 (1973), 229-240 Zbl0285.65067MR395263
- 8 M ZLAMAL, On the Finite Element Method Numer Math 12 (1968), 394-409 Zbl0176.16001MR243753
- 9 M ZLAMAL, Finite Element Methods for Nonlinear Parabolic Equations R A I R O Anal Numer 11 (1977), 93-107 Zbl0385.65049MR502073
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.