Finite element solution of a nonlinear diffusion problem with a moving boundary

Libor Čermák; Miloš Zlámal

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1986)

  • Volume: 20, Issue: 3, page 403-426
  • ISSN: 0764-583X

How to cite

top

Čermák, Libor, and Zlámal, Miloš. "Finite element solution of a nonlinear diffusion problem with a moving boundary." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 20.3 (1986): 403-426. <http://eudml.org/doc/193483>.

@article{Čermák1986,
author = {Čermák, Libor, Zlámal, Miloš},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {nonlinear diffusion; moving boundary; semiconductor device; finite element; Stability; error estimate; numerical results},
language = {eng},
number = {3},
pages = {403-426},
publisher = {Dunod},
title = {Finite element solution of a nonlinear diffusion problem with a moving boundary},
url = {http://eudml.org/doc/193483},
volume = {20},
year = {1986},
}

TY - JOUR
AU - Čermák, Libor
AU - Zlámal, Miloš
TI - Finite element solution of a nonlinear diffusion problem with a moving boundary
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1986
PB - Dunod
VL - 20
IS - 3
SP - 403
EP - 426
LA - eng
KW - nonlinear diffusion; moving boundary; semiconductor device; finite element; Stability; error estimate; numerical results
UR - http://eudml.org/doc/193483
ER -

References

top
  1. 1 D J CHIN, M R KUMP and R W DUTTON, SUPRA-Stanford University Process Analysis Program, Stanford Electronics Laboratories Stanford University, Stanford, U S A , July 1981 
  2. 2 T DUPONT, G FAIRWEATHER and J P Johnson, Three-Level Galerkin Methods for Parabolic Equations SIAM J Numer Anal 11 (1974), 392 410 Zbl0313.65107MR403259
  3. 3 M LEES, A priori Estimates for the Solutions of Difference Approximations to Parabolic Differential Equations Duke Math J 27 (1960), 287-311 Zbl0092.32803MR121998
  4. 4 C D MALDONADO, ROMANS II, A Two-Dimensional Process Simulator for Modeling and Simulation in the Design of VLSI Devices Applied Physics A31 (1983), 119-138 
  5. 5 B R PENUMALLI, A Comprehensive Two-Dimensional VLSI Process Simulation Program BICEPS, IEEE Trans on Electron Devices 30 (1983), 986-992 
  6. 6 M F WHEELER, A priori L 2 error estimates for Galerkin approximations to parabolic partial differential equations SIAM J Numer Anal 10 (1973), 723-759 Zbl0232.35060MR351124
  7. 7 M ZLAMAL, Curved Elements in the Finite Element Method I SIAM J Numer Anal 10 (1973), 229-240 Zbl0285.65067MR395263
  8. 8 M ZLAMAL, On the Finite Element Method Numer Math 12 (1968), 394-409 Zbl0176.16001MR243753
  9. 9 M ZLAMAL, Finite Element Methods for Nonlinear Parabolic Equations R A I R O Anal Numer 11 (1977), 93-107 Zbl0385.65049MR502073

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.