Une famille de schémas numériques T.V.D. pour les lois de conservation hyperboliques

Hervé Gilquin

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1986)

  • Volume: 20, Issue: 3, page 429-460
  • ISSN: 0764-583X

How to cite

top

Gilquin, Hervé. "Une famille de schémas numériques T.V.D. pour les lois de conservation hyperboliques." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 20.3 (1986): 429-460. <http://eudml.org/doc/193485>.

@article{Gilquin1986,
author = {Gilquin, Hervé},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Godunov scheme; Glimm scheme; Cauchy problem; total variation diminishing; stability; convergence; weak entropy solution; numerical results},
language = {fre},
number = {3},
pages = {429-460},
publisher = {Dunod},
title = {Une famille de schémas numériques T.V.D. pour les lois de conservation hyperboliques},
url = {http://eudml.org/doc/193485},
volume = {20},
year = {1986},
}

TY - JOUR
AU - Gilquin, Hervé
TI - Une famille de schémas numériques T.V.D. pour les lois de conservation hyperboliques
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1986
PB - Dunod
VL - 20
IS - 3
SP - 429
EP - 460
LA - fre
KW - Godunov scheme; Glimm scheme; Cauchy problem; total variation diminishing; stability; convergence; weak entropy solution; numerical results
UR - http://eudml.org/doc/193485
ER -

References

top
  1. [1] A J CHORIN, Random choice solution of hyperbolic Systems of equations,Comm Pure Appl Math 18 (1965), pp 695-715 
  2. [2] J GLIMM, Solutions in the large for nonlinear hyperbolic Systems of equations, Communications on pure and applied mathematics 18 (1965), pp 697-715 Zbl0141.28902MR194770
  3. [3] S K GODOUNOV, A finite difference method for the numerical computation of discontinuous solutions of the equations of fluid dynamics, Mat Sb 47 (1959), pp 271-290 
  4. [4] S K GODOUNOV et Coll, Résolution numérique des problèmes multidimensionnels de la dynamique des gaz, Mir, MOSCOU 1979 Zbl0421.65056MR596224
  5. [5] A HARTEN and P D LAX, A random choice finite-difference scheme for hyperbolic conservation laws, SIAM J Numer Anal 18 (1981), pp 289-315 Zbl0467.65038MR612144
  6. [6] S N KRUZKOV, First order quasi-linear equations in several independent variables, Math URSS Sb , 10 (1970), pp 217-243 
  7. [7] P D LAX, Hyperbolic Systems of conservation laws and the mathematical theory of shock waves, SIAM Régional Conference Series in Applied Mathematics 11, 1973 Zbl0268.35062MR350216
  8. [8] P D LAX, Hyperbolic Systems of conservation laws, II Comm Pure Appl Math, 10 (1957), pp 537-566 Zbl0081.08803MR93653
  9. [9] B VAN LEER, On the relation between the upwind differencing schemes of Godounov, Enquist-Osher, and Roe, SIAM J Sci Stat Comp 5 (1984), pp 1-20 Zbl0547.65065MR731878
  10. [10] A Y LEROUX, Thèse de Docteur ès-Sciences Mathématiques, Université de Rennes (1979) 
  11. [11] T P LUI, Admissible solutions of hyperbolic conservation laws, Mémoire of the AMS, Vol 30, No 240, 1981 Zbl0446.76058MR603391
  12. [12] T P LIU, The determnistic version of the Glimm scheme, Comm Math Phys , 57 (1977), pp 135-148 Zbl0376.35042MR470508
  13. [13] S OSHER, Riemann solvers, the entropy condition, and difference approximations, SIAM J Numer Anal 21 (1984), pp 217-235 Zbl0592.65069MR736327
  14. [14] S OSHER and F SOLOMON, Upwind schemes for hyperbolic Systems of conservation laws, Math Comp , 38 (1981), pp 357-372 Zbl0483.65055MR645656
  15. [14] P L ROE, Approximate Riemann solvers, parameter vectors and difference schemes, J Comp Phys 43 (1981), pp 357-372 Zbl0474.65066MR640362
  16. [15] M SCHATZMAN, Introduction à l'analyse des systèmes hyperboliques de lois de conservation non-lineaire, Publication de l'Equipe d'Analyse Numérique Lyon-Saint-Etienne (1985) No 37 
  17. [16] G A SOD, A survey of several difference methods for Systems of nonlinear hyperbolic conservation laws, J Comput Phys , 27 (1978), pp 1-31 Zbl0387.76063MR495002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.