Une famille de schémas numériques T.V.D. pour les lois de conservation hyperboliques
- Volume: 20, Issue: 3, page 429-460
- ISSN: 0764-583X
Access Full Article
topHow to cite
topGilquin, Hervé. "Une famille de schémas numériques T.V.D. pour les lois de conservation hyperboliques." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 20.3 (1986): 429-460. <http://eudml.org/doc/193485>.
@article{Gilquin1986,
author = {Gilquin, Hervé},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Godunov scheme; Glimm scheme; Cauchy problem; total variation diminishing; stability; convergence; weak entropy solution; numerical results},
language = {fre},
number = {3},
pages = {429-460},
publisher = {Dunod},
title = {Une famille de schémas numériques T.V.D. pour les lois de conservation hyperboliques},
url = {http://eudml.org/doc/193485},
volume = {20},
year = {1986},
}
TY - JOUR
AU - Gilquin, Hervé
TI - Une famille de schémas numériques T.V.D. pour les lois de conservation hyperboliques
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1986
PB - Dunod
VL - 20
IS - 3
SP - 429
EP - 460
LA - fre
KW - Godunov scheme; Glimm scheme; Cauchy problem; total variation diminishing; stability; convergence; weak entropy solution; numerical results
UR - http://eudml.org/doc/193485
ER -
References
top- [1] A J CHORIN, Random choice solution of hyperbolic Systems of equations,Comm Pure Appl Math 18 (1965), pp 695-715
- [2] J GLIMM, Solutions in the large for nonlinear hyperbolic Systems of equations, Communications on pure and applied mathematics 18 (1965), pp 697-715 Zbl0141.28902MR194770
- [3] S K GODOUNOV, A finite difference method for the numerical computation of discontinuous solutions of the equations of fluid dynamics, Mat Sb 47 (1959), pp 271-290
- [4] S K GODOUNOV et Coll, Résolution numérique des problèmes multidimensionnels de la dynamique des gaz, Mir, MOSCOU 1979 Zbl0421.65056MR596224
- [5] A HARTEN and P D LAX, A random choice finite-difference scheme for hyperbolic conservation laws, SIAM J Numer Anal 18 (1981), pp 289-315 Zbl0467.65038MR612144
- [6] S N KRUZKOV, First order quasi-linear equations in several independent variables, Math URSS Sb , 10 (1970), pp 217-243
- [7] P D LAX, Hyperbolic Systems of conservation laws and the mathematical theory of shock waves, SIAM Régional Conference Series in Applied Mathematics 11, 1973 Zbl0268.35062MR350216
- [8] P D LAX, Hyperbolic Systems of conservation laws, II Comm Pure Appl Math, 10 (1957), pp 537-566 Zbl0081.08803MR93653
- [9] B VAN LEER, On the relation between the upwind differencing schemes of Godounov, Enquist-Osher, and Roe, SIAM J Sci Stat Comp 5 (1984), pp 1-20 Zbl0547.65065MR731878
- [10] A Y LEROUX, Thèse de Docteur ès-Sciences Mathématiques, Université de Rennes (1979)
- [11] T P LUI, Admissible solutions of hyperbolic conservation laws, Mémoire of the AMS, Vol 30, No 240, 1981 Zbl0446.76058MR603391
- [12] T P LIU, The determnistic version of the Glimm scheme, Comm Math Phys , 57 (1977), pp 135-148 Zbl0376.35042MR470508
- [13] S OSHER, Riemann solvers, the entropy condition, and difference approximations, SIAM J Numer Anal 21 (1984), pp 217-235 Zbl0592.65069MR736327
- [14] S OSHER and F SOLOMON, Upwind schemes for hyperbolic Systems of conservation laws, Math Comp , 38 (1981), pp 357-372 Zbl0483.65055MR645656
- [14] P L ROE, Approximate Riemann solvers, parameter vectors and difference schemes, J Comp Phys 43 (1981), pp 357-372 Zbl0474.65066MR640362
- [15] M SCHATZMAN, Introduction à l'analyse des systèmes hyperboliques de lois de conservation non-lineaire, Publication de l'Equipe d'Analyse Numérique Lyon-Saint-Etienne (1985) No 37
- [16] G A SOD, A survey of several difference methods for Systems of nonlinear hyperbolic conservation laws, J Comput Phys , 27 (1978), pp 1-31 Zbl0387.76063MR495002
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.