Une méthodologie du calcul hardware des fonctions élémentaires
- Volume: 20, Issue: 4, page 667-695
- ISSN: 0764-583X
Access Full Article
topHow to cite
topMuller, Jean-Michel. "Une méthodologie du calcul hardware des fonctions élémentaires." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 20.4 (1986): 667-695. <http://eudml.org/doc/193493>.
@article{Muller1986,
author = {Muller, Jean-Michel},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {survey paper; algebraic computation; Efficient hardware algorithms; discrete basis},
language = {fre},
number = {4},
pages = {667-695},
publisher = {Dunod},
title = {Une méthodologie du calcul hardware des fonctions élémentaires},
url = {http://eudml.org/doc/193493},
volume = {20},
year = {1986},
}
TY - JOUR
AU - Muller, Jean-Michel
TI - Une méthodologie du calcul hardware des fonctions élémentaires
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1986
PB - Dunod
VL - 20
IS - 4
SP - 667
EP - 695
LA - fre
KW - survey paper; algebraic computation; Efficient hardware algorithms; discrete basis
UR - http://eudml.org/doc/193493
ER -
References
top- [1] M. ABRAMOWITZ and I. A. STEGUN, Handbook of Mathematical Functions withformulas, graphs, and mathematical tables, Nat. Bur. Standards, Appl. Math. Series, 55, Washington D.C., 1964. Zbl0643.33001
- [2] H. M. AHMED, J. M. DELOSME, M. MORF, Highly concurrent Computing structures or matrix arithmetic and signal processing, Computer, Jan. 1982.
- [3] F. ANCEAU, Architecture and design of Von Neumann microprocessors, Nato advanced summer institute, July 1980.
- [4] M. ANDREWS and T. M R A Z, Unified elementary function generator, Microprocessors and Microsystems, Vol. 2 n° 5, Oct. 1978, pp. 270-274.
- [5] P. W. BAKER, More efficient radix-2 algorithms for some elementary functions, IEEE Trans, on computers, vol. c-24 n° 11, Nov. 1975, pp. 1049-1054. Zbl0324.68040MR386336
- [6] P. W. BAKER, Suggestion for a fast binary Sine/Cosine generator, IEEE Trans, on Computers, Nov. 1976, pp. 1134-1136.
- [7] R. P. BRENT, Multiple-precision zero-finding methods and the complexity of elementary function evaluation, Analytic Computational Complexity (Ed. by J. F. Traub), Academic Press, New York, 1975, pp. 151-176. Zbl0342.65031MR423869
- [8] R. P. BRENT, Fast multiple-precision evaluation of elementary functions, J. ACM 23, 1976, pp. 242-251. Zbl0324.65018MR395314
- [9] R. P. BRENT, Unrestricted algorithms for elementary and special functions, Information Processing 80, S. H. Lavington ed., North-Holland Publishing Comp., pp. 613-619. Zbl0442.65013
- [10] T. H. CHAN and O. H. IBARRA, On the space and time complexity of functions computable by sample programs, Siam J. Comput, Vol. 12, n° 4, Nov. 1983. Zbl0524.68030MR721008
- [11] T. C. CHEN, Automatic computation of exponentials, logarithms, ratios and square roots. IBM J. Res. and Development, Vol. 16, July 1972, pp. 380-388. Zbl0257.68057MR336965
- [12] C. W. CLENSHAW and F. W. J. OLVER, Bzyond floating point, J. of the ACM,Vol. 31, n° 2, April 1984, pp. 319-328. Zbl0628.65037MR819141
- [13] W. CODY and W. WAITE, Software manual for the elementary functions, Prentice-Hall, inc, Englewood cliffs, New-Jersey, 1980. Zbl0468.68036
- [14] W. CODY, Implementation and testing of function software, ibid.Ibid.
- [15] W. CODY, Basic concepts for computational software, Ibid.Ibid.
- [16] W. CODY, Performance testing of function subroutines, AFIPS Conf. Proc , Vol. 34,1969 SJCC, AFIPS Press, Montvale, N.J., 1969, pp. 759-763.
- [17] J. T. COONEN, An implementation guide to a proposed standard for floating-point arithmetic, IEEE Computer, Jan. 1980.
- [18] J M DELOSME, VLSI implementatwn of rotations in pseudo-euchdian space, proc 1983 IEEE Int Conf on ASSP, Boston, April 1983, pp 927-930
- [19] J M DELOSME, The matrix exponential approach to elementary operations, Depart of Electrical Engineering, Yale Univ, NewHaven
- [20] B DE LUGISH, A class of algorithms for automatic evaluation of certain elementar functions in a binary computer, Ph D dissertation, Dep Computer sci, Univ of Illinois, Urbana, June 1970
- [21] B DERRIDA, A GERVOIS, Y POMEAU, Iteration of endomorphisms on thereal axis and representation of numbers Commissariat à l'énergie Atomique, Service de physique théorique, CEN Saclay Zbl0416.28012
- [22] A M DESPAIN, Fourier transform computers using CORDIC iterations, IEEE Trans on Computers, Vol c-23 n° 10,Oct 1974 Zbl0287.65073
- [23] A M DESPAIN, Pipeline and parallel-pipeline FFT Processors for VLSI implementations, IEEE Trans on Computers, Vol c-33 n° 5, May 1984 Zbl0528.68019
- [24] M D ERCEGOVAC, Radix-16 evaluation of certain elementary functions, IEEE Trans on Computers, Vol c-22 n° 16, June 1973 Zbl0257.68052
- [25] M D ERCEGOVAC, A general method for évaluation of functions in a digital computer, Computer sci dep , School of Engineering & Applied science, Univ of California, Los Angeles, Cahfornia 90024 Zbl0406.68039
- [26] C T FIKE, Computational evaluation of math functions, Prentice-Hall, Englewoodcliffs, New-Jersey, 1968 Zbl0205.19301
- [27] W M GENTLEMAN, More on algorithms that reveal properties of floating-point arithmetics units, Comm of the ACM, Vol 17, n° 5, May 1974
- [28] G W GERRITY, Computer representation of real numbers, IEEE Trans Computers, Vol c-31 n° 8, Aug 1982 Zbl0488.68039
- [29] G H HAVILAND and A TUSZYNSKY, A CORDIC arithmetic processor chip, IEEE Trans on Computers, Vol c-29 n° 2, Feb 1980
- [30] J F HART, E W CHENE, C L LAWSON, H J MAEHLY, C K MESZTENYI, J R RICE, H C TACHER Jr, and C WITZGALL, Computer Approximations, Wiley NY, 1968
- [31] J P KAHONE and R SALEM, Ensembles parfaits et séries trigonométriques, Actualités scientifiques et industrielles 1301, Hermann Pans, 1963 Zbl0112.29304MR160065
- [32] A H KARP, Exponential and logarithm by sequential squaring, IEEE Trans on Computers, Vol c-33, n° 5, May 1984, pp 462-464
- [33] D E KNUTH, The art of computer programming, Vol 2, Addison Wesley, ReadingD E KNUTH, Mass , 1969 Zbl0191.18001MR633878
- [34] J KROPA, Calculator algorithms, Math Mag , Vol 51 n° 2, March 1978, pp 106-109 Zbl0397.65082MR1572257
- [35] J D MARASA and D W MATULA, A simulated study of correlated error propagation in various finite-precision arithmetic, IEEE Trans on Computers, Vol c-22, n° 6, June 1973 Zbl0257.65043
- [36] C MASSE, L'itération de Newton convergence et chaos, these de troisième cycle Université Grenoble I, Oct 1984
- [37] D W MATULA, Basic digit sets for radix representation, J of the ACM, Vol 29n°4,Oct 1982, pp 1131-1143 Zbl0509.10008MR674260
- [38] J E MEGGITT, Pseudo Division and Pseudo Multiplication Processes, IBM of Res and Dev , Vol 6, April 1962, pp 210-227 Zbl0201.48709
- [39] J M MULLER, Discrete basis and computation of elementary functions, IEEE Trans on Computers, Sept 1985, pp 857-862 MR810091
- [40] J. M. MULLER, Conditionnement de fonctions et représentation flottante des nombres réels, RR Math. App. n°453, Grenoble, 1984.
- [41] J. M. MULLER, A hardware algorithm for Computing the complex exponential fonction, RMath. App. n° 467, Grenoble, 1984
- [42] A. NASEEM and P. D. FISHER, A modified CORDIC Algorithm, Preprint Dept. of Electrical Engineering and Systems Science, Michigan State Univ., East Lansing, Michigan 48824.
- [43] F. W. J. OLVER, A new approach to error arithmetic, SIAM J. Numer. Analysis, Vol. 15 n° 2, April 1978. Zbl0385.65019MR483379
- [44] G. PAUL and W. WAYNE WILSON, Should the elementary function library be incorporated into computer instruction sets, ACM Trans, on Math. Software, Vol. 2 n° 2, June 1976, pp. 132-142.
- [45] W. PARRY, On the ß-expansion of real numbers, Acta math. acad. sci.Hung., 11, 1960, pp. 401-416. Zbl0099.28103MR142719
- [46] M. PICHAT, Contribution à l'étude des erreurs d'arrondi en arithmétique à virgule flottante, thèse d'état, Grenoble, France, 1976.
- [47] A. RENYI, Representations for real numbers and their ergodic functions, Acta. Math.Acad. Sci. Hungary, 1957, pp. 477-493. Zbl0079.08901MR97374
- [48] A. RENYI, On the distribution of the digits in Cantor's series, Mat. Lapok 7, 1956 pp. 77-100. Zbl0075.03703MR99968
- [49] F. ROBERT, Itération machine d'une fonction affine, RR Math. App.n°440, IMAG, Grenoble, France.
- [50] B. P. SARKAR and E. V. KRISHNAMURTHY, Economic pseudodivision processes for obtaining square root, logarithm and arctan, IEEE Trans, onComputers, Dec. 1971, pp. 1589-1593. Zbl0229.68007
- [51] C. W. SCHELIN, Calculator function approximation, Amer. Math. Monthly 90,5, May 1983. Zbl0532.65012MR701572
- [52] H. SCHMID and A. BOGOCKI, Use decimal CORDIC for generation of many transcendental functions, Electrical design mag., Feb. 1973, pp. 64-73.
- [53] O. SPANIOL, Computer arithmetic and design, J. Wiley & Sons, 1981. Zbl0493.68007MR611684
- [54] W. H. SPECKER, A Class of algorithms for In (JC), exp(x), sin(x), cos(x), arctan(x) and arcot(x), IEEE Trans, on electronic computers, Vol. ec-14, 1965, pp. 85-86. Zbl0146.14805
- [55] C. TRICOT, Mesures et dimensions, Thèse d'état, Université Paris-sud, centre d'Orsay, Paris, Dec. 1983.
- [56] J. M. TRIO, Microprocesseurs 8086-8088 Architecture et programmation, Copro-cesseur de calcul 8087, Éditions Eyrolles, Paris, 1984.
- [57] J. VOLDER, The CORDIC Computing technique, IRE Trans, on Computers,Vol. ec-8, Sept. 1959, pp. 330-334.
- [58] J. WALTHER, A Unified algorithm for elementary functions, Joint Computer Conference Proceedings, Vol. 38, pp. 379-385. Zbl0279.68032
- [59] E. H. WOLD, Pipeline and parallel-pipeline FFT processors for VLSI implementations, IEEE Trans. on Computers, Vol. c-33 n°5, May 1984. Zbl0528.68019
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.