Une méthodologie du calcul hardware des fonctions élémentaires

Jean-Michel Muller

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1986)

  • Volume: 20, Issue: 4, page 667-695
  • ISSN: 0764-583X

How to cite


Muller, Jean-Michel. "Une méthodologie du calcul hardware des fonctions élémentaires." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 20.4 (1986): 667-695. <http://eudml.org/doc/193493>.

author = {Muller, Jean-Michel},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {survey paper; algebraic computation; Efficient hardware algorithms; discrete basis},
language = {fre},
number = {4},
pages = {667-695},
publisher = {Dunod},
title = {Une méthodologie du calcul hardware des fonctions élémentaires},
url = {http://eudml.org/doc/193493},
volume = {20},
year = {1986},

AU - Muller, Jean-Michel
TI - Une méthodologie du calcul hardware des fonctions élémentaires
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1986
PB - Dunod
VL - 20
IS - 4
SP - 667
EP - 695
LA - fre
KW - survey paper; algebraic computation; Efficient hardware algorithms; discrete basis
UR - http://eudml.org/doc/193493
ER -


  1. [1] M. ABRAMOWITZ and I. A. STEGUN, Handbook of Mathematical Functions withformulas, graphs, and mathematical tables, Nat. Bur. Standards, Appl. Math. Series, 55, Washington D.C., 1964. Zbl0643.33001
  2. [2] H. M. AHMED, J. M. DELOSME, M. MORF, Highly concurrent Computing structures or matrix arithmetic and signal processing, Computer, Jan. 1982. 
  3. [3] F. ANCEAU, Architecture and design of Von Neumann microprocessors, Nato advanced summer institute, July 1980. 
  4. [4] M. ANDREWS and T. M R A Z, Unified elementary function generator, Microprocessors and Microsystems, Vol. 2 n° 5, Oct. 1978, pp. 270-274. 
  5. [5] P. W. BAKER, More efficient radix-2 algorithms for some elementary functions, IEEE Trans, on computers, vol. c-24 n° 11, Nov. 1975, pp. 1049-1054. Zbl0324.68040MR386336
  6. [6] P. W. BAKER, Suggestion for a fast binary Sine/Cosine generator, IEEE Trans, on Computers, Nov. 1976, pp. 1134-1136. 
  7. [7] R. P. BRENT, Multiple-precision zero-finding methods and the complexity of elementary function evaluation, Analytic Computational Complexity (Ed. by J. F. Traub), Academic Press, New York, 1975, pp. 151-176. Zbl0342.65031MR423869
  8. [8] R. P. BRENT, Fast multiple-precision evaluation of elementary functions, J. ACM 23, 1976, pp. 242-251. Zbl0324.65018MR395314
  9. [9] R. P. BRENT, Unrestricted algorithms for elementary and special functions, Information Processing 80, S. H. Lavington ed., North-Holland Publishing Comp., pp. 613-619. Zbl0442.65013
  10. [10] T. H. CHAN and O. H. IBARRA, On the space and time complexity of functions computable by sample programs, Siam J. Comput, Vol. 12, n° 4, Nov. 1983. Zbl0524.68030MR721008
  11. [11] T. C. CHEN, Automatic computation of exponentials, logarithms, ratios and square roots. IBM J. Res. and Development, Vol. 16, July 1972, pp. 380-388. Zbl0257.68057MR336965
  12. [12] C. W. CLENSHAW and F. W. J. OLVER, Bzyond floating point, J. of the ACM,Vol. 31, n° 2, April 1984, pp. 319-328. Zbl0628.65037MR819141
  13. [13] W. CODY and W. WAITE, Software manual for the elementary functions, Prentice-Hall, inc, Englewood cliffs, New-Jersey, 1980. Zbl0468.68036
  14. [14] W. CODY, Implementation and testing of function software, ibid.Ibid. 
  15. [15] W. CODY, Basic concepts for computational software, Ibid.Ibid. 
  16. [16] W. CODY, Performance testing of function subroutines, AFIPS Conf. Proc , Vol. 34,1969 SJCC, AFIPS Press, Montvale, N.J., 1969, pp. 759-763. 
  17. [17] J. T. COONEN, An implementation guide to a proposed standard for floating-point arithmetic, IEEE Computer, Jan. 1980. 
  18. [18] J M DELOSME, VLSI implementatwn of rotations in pseudo-euchdian space, proc 1983 IEEE Int Conf on ASSP, Boston, April 1983, pp 927-930 
  19. [19] J M DELOSME, The matrix exponential approach to elementary operations, Depart of Electrical Engineering, Yale Univ, NewHaven 
  20. [20] B DE LUGISH, A class of algorithms for automatic evaluation of certain elementar functions in a binary computer, Ph D dissertation, Dep Computer sci, Univ of Illinois, Urbana, June 1970 
  21. [21] B DERRIDA, A GERVOIS, Y POMEAU, Iteration of endomorphisms on thereal axis and representation of numbers Commissariat à l'énergie Atomique, Service de physique théorique, CEN Saclay Zbl0416.28012
  22. [22] A M DESPAIN, Fourier transform computers using CORDIC iterations, IEEE Trans on Computers, Vol c-23 n° 10,Oct 1974 Zbl0287.65073
  23. [23] A M DESPAIN, Pipeline and parallel-pipeline FFT Processors for VLSI implementations, IEEE Trans on Computers, Vol c-33 n° 5, May 1984 Zbl0528.68019
  24. [24] M D ERCEGOVAC, Radix-16 evaluation of certain elementary functions, IEEE Trans on Computers, Vol c-22 n° 16, June 1973 Zbl0257.68052
  25. [25] M D ERCEGOVAC, A general method for évaluation of functions in a digital computer, Computer sci dep , School of Engineering & Applied science, Univ of California, Los Angeles, Cahfornia 90024 Zbl0406.68039
  26. [26] C T FIKE, Computational evaluation of math functions, Prentice-Hall, Englewoodcliffs, New-Jersey, 1968 Zbl0205.19301
  27. [27] W M GENTLEMAN, More on algorithms that reveal properties of floating-point arithmetics units, Comm of the ACM, Vol 17, n° 5, May 1974 
  28. [28] G W GERRITY, Computer representation of real numbers, IEEE Trans Computers, Vol c-31 n° 8, Aug 1982 Zbl0488.68039
  29. [29] G H HAVILAND and A TUSZYNSKY, A CORDIC arithmetic processor chip, IEEE Trans on Computers, Vol c-29 n° 2, Feb 1980 
  30. [30] J F HART, E W CHENE, C L LAWSON, H J MAEHLY, C K MESZTENYI, J R RICE, H C TACHER Jr, and C WITZGALL, Computer Approximations, Wiley NY, 1968 
  31. [31] J P KAHONE and R SALEM, Ensembles parfaits et séries trigonométriques, Actualités scientifiques et industrielles 1301, Hermann Pans, 1963 Zbl0112.29304MR160065
  32. [32] A H KARP, Exponential and logarithm by sequential squaring, IEEE Trans on Computers, Vol c-33, n° 5, May 1984, pp 462-464 
  33. [33] D E KNUTH, The art of computer programming, Vol 2, Addison Wesley, ReadingD E KNUTH, Mass , 1969 Zbl0191.18001MR633878
  34. [34] J KROPA, Calculator algorithms, Math Mag , Vol 51 n° 2, March 1978, pp 106-109 Zbl0397.65082MR1572257
  35. [35] J D MARASA and D W MATULA, A simulated study of correlated error propagation in various finite-precision arithmetic, IEEE Trans on Computers, Vol c-22, n° 6, June 1973 Zbl0257.65043
  36. [36] C MASSE, L'itération de Newton convergence et chaos, these de troisième cycle Université Grenoble I, Oct 1984 
  37. [37] D W MATULA, Basic digit sets for radix representation, J of the ACM, Vol 29n°4,Oct 1982, pp 1131-1143 Zbl0509.10008MR674260
  38. [38] J E MEGGITT, Pseudo Division and Pseudo Multiplication Processes, IBM of Res and Dev , Vol 6, April 1962, pp 210-227 Zbl0201.48709
  39. [39] J M MULLER, Discrete basis and computation of elementary functions, IEEE Trans on Computers, Sept 1985, pp 857-862 MR810091
  40. [40] J. M. MULLER, Conditionnement de fonctions et représentation flottante des nombres réels, RR Math. App. n°453, Grenoble, 1984. 
  41. [41] J. M. MULLER, A hardware algorithm for Computing the complex exponential fonction, RMath. App. n° 467, Grenoble, 1984 
  42. [42] A. NASEEM and P. D. FISHER, A modified CORDIC Algorithm, Preprint Dept. of Electrical Engineering and Systems Science, Michigan State Univ., East Lansing, Michigan 48824. 
  43. [43] F. W. J. OLVER, A new approach to error arithmetic, SIAM J. Numer. Analysis, Vol. 15 n° 2, April 1978. Zbl0385.65019MR483379
  44. [44] G. PAUL and W. WAYNE WILSON, Should the elementary function library be incorporated into computer instruction sets, ACM Trans, on Math. Software, Vol. 2 n° 2, June 1976, pp. 132-142. 
  45. [45] W. PARRY, On the ß-expansion of real numbers, Acta math. acad. sci.Hung., 11, 1960, pp. 401-416. Zbl0099.28103MR142719
  46. [46] M. PICHAT, Contribution à l'étude des erreurs d'arrondi en arithmétique à virgule flottante, thèse d'état, Grenoble, France, 1976. 
  47. [47] A. RENYI, Representations for real numbers and their ergodic functions, Acta. Math.Acad. Sci. Hungary, 1957, pp. 477-493. Zbl0079.08901MR97374
  48. [48] A. RENYI, On the distribution of the digits in Cantor's series, Mat. Lapok 7, 1956 pp. 77-100. Zbl0075.03703MR99968
  49. [49] F. ROBERT, Itération machine d'une fonction affine, RR Math. App.n°440, IMAG, Grenoble, France. 
  50. [50] B. P. SARKAR and E. V. KRISHNAMURTHY, Economic pseudodivision processes for obtaining square root, logarithm and arctan, IEEE Trans, onComputers, Dec. 1971, pp. 1589-1593. Zbl0229.68007
  51. [51] C. W. SCHELIN, Calculator function approximation, Amer. Math. Monthly 90,5, May 1983. Zbl0532.65012MR701572
  52. [52] H. SCHMID and A. BOGOCKI, Use decimal CORDIC for generation of many transcendental functions, Electrical design mag., Feb. 1973, pp. 64-73. 
  53. [53] O. SPANIOL, Computer arithmetic and design, J. Wiley & Sons, 1981. Zbl0493.68007MR611684
  54. [54] W. H. SPECKER, A Class of algorithms for In (JC), exp(x), sin(x), cos(x), arctan(x) and arcot(x), IEEE Trans, on electronic computers, Vol. ec-14, 1965, pp. 85-86. Zbl0146.14805
  55. [55] C. TRICOT, Mesures et dimensions, Thèse d'état, Université Paris-sud, centre d'Orsay, Paris, Dec. 1983. 
  56. [56] J. M. TRIO, Microprocesseurs 8086-8088 Architecture et programmation, Copro-cesseur de calcul 8087, Éditions Eyrolles, Paris, 1984. 
  57. [57] J. VOLDER, The CORDIC Computing technique, IRE Trans, on Computers,Vol. ec-8, Sept. 1959, pp. 330-334. 
  58. [58] J. WALTHER, A Unified algorithm for elementary functions, Joint Computer Conference Proceedings, Vol. 38, pp. 379-385. Zbl0279.68032
  59. [59] E. H. WOLD, Pipeline and parallel-pipeline FFT processors for VLSI implementations, IEEE Trans. on Computers, Vol. c-33 n°5, May 1984. Zbl0528.68019

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.