Shape optimization in two-dimensional elasticity by the dual finite element method
- Volume: 21, Issue: 1, page 63-92
- ISSN: 0764-583X
Access Full Article
topHow to cite
topReferences
top- [1] J. P. AUBIN, Approximations of elliptic boundary value problems. J. Wiley-Interscience, New York, 1972. Zbl0248.65063MR478662
- [2] N. V. BANICHUK, Problems and methods of optimal structural design. PlenumN. V. BANICHUK, Problems and me Press, New York and London, 1983. Zbl0649.73041MR715778
- [3] D. BEGIS, R. GLOWINSKI, Application de la méthode des éléments finis à l'approximation d'un problème de domaine optimal. Appl. Math. & Optim. 2 (1975), 130-169. Zbl0323.90063MR443372
- [4] I. HLAVACEK, Convergence of an equilibrium finite element model for plane elastostatics. Apl. Mat.24 (1979), 427-456. Zbl0441.73101MR547046
- [5] I. HLAVACEK, Dual finite element analysis for some elliptic variational equations and inequalities. Acta Applicandae Math. 1 (1983), 121-150. Zbl0523.65049MR713475
- [6] J. HLAVACEK : Optimization of the domain in elliptic problems by the dual finite element method. Api.Mat.30 (1985), 50-72. Zbl0575.65103MR779332
- [7] J. HASLINGER, I. HLAVACEK, Approximation of the Signorini problem with friction by a mixed finite element method. J. Math. Anal. Appl. 86 (1982), 99-122. Zbl0486.73099MR649858
- [8] J. HASLINGER, J. LOVISEK, The approximation of the optimal shape control problem governed by a variational inequality with flux cost functional. To appear in Proc. Zbl0625.73025MR831811
- [9] J. HASLINGER, P. NEITTAANMÄKI, On the existence of optimal shapes in contact problems, Numer. Funct. Anal, and Optimiz. 7 (1984), 107-124. Zbl0559.73099MR767377
- [10] J. HASLINGER, P. NEITTAANMÄKI, T TIIHONEN, On optimal shape design of an elastic body on a rigid foundation. To appear in Proc. of the MAFELAP Confe-rence 1984. Zbl0588.73159MR811062
- [11] J. NECAS, I. HLAVACEK, Mathematical theory of elastic and elasto-plastic bodies.Elsevier, Amsterdam 1981. Zbl0448.73009
- [12] V. B WATWOOD, B. J. HARTZ, An equilibrium stress field model for finite element solution of two-dimensional elastostatic problems. Internat. J. Solids Structures 4 (1968), 857-873. Zbl0164.26201