Shape optimization in two-dimensional elasticity by the dual finite element method

I. Hlaváček

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1987)

  • Volume: 21, Issue: 1, page 63-92
  • ISSN: 0764-583X

How to cite

top

Hlaváček, I.. "Shape optimization in two-dimensional elasticity by the dual finite element method." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 21.1 (1987): 63-92. <http://eudml.org/doc/193497>.

@article{Hlaváček1987,
author = {Hlaváček, I.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {minimization of cost functional; respect to part of boundary; elastic body fixed; existence of optimal boundary; Castigliano principle; approximate cost functional of stresses; piecewise linear stress field; convergence; Finite element approximations; dual state problem; continuous dependence; approximate stress functions; approximate control},
language = {eng},
number = {1},
pages = {63-92},
publisher = {Dunod},
title = {Shape optimization in two-dimensional elasticity by the dual finite element method},
url = {http://eudml.org/doc/193497},
volume = {21},
year = {1987},
}

TY - JOUR
AU - Hlaváček, I.
TI - Shape optimization in two-dimensional elasticity by the dual finite element method
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1987
PB - Dunod
VL - 21
IS - 1
SP - 63
EP - 92
LA - eng
KW - minimization of cost functional; respect to part of boundary; elastic body fixed; existence of optimal boundary; Castigliano principle; approximate cost functional of stresses; piecewise linear stress field; convergence; Finite element approximations; dual state problem; continuous dependence; approximate stress functions; approximate control
UR - http://eudml.org/doc/193497
ER -

References

top
  1. [1] J. P. AUBIN, Approximations of elliptic boundary value problems. J. Wiley-Interscience, New York, 1972. Zbl0248.65063MR478662
  2. [2] N. V. BANICHUK, Problems and methods of optimal structural design. PlenumN. V. BANICHUK, Problems and me Press, New York and London, 1983. Zbl0649.73041MR715778
  3. [3] D. BEGIS, R. GLOWINSKI, Application de la méthode des éléments finis à l'approximation d'un problème de domaine optimal. Appl. Math. & Optim. 2 (1975), 130-169. Zbl0323.90063MR443372
  4. [4] I. HLAVACEK, Convergence of an equilibrium finite element model for plane elastostatics. Apl. Mat.24 (1979), 427-456. Zbl0441.73101MR547046
  5. [5] I. HLAVACEK, Dual finite element analysis for some elliptic variational equations and inequalities. Acta Applicandae Math. 1 (1983), 121-150. Zbl0523.65049MR713475
  6. [6] J. HLAVACEK : Optimization of the domain in elliptic problems by the dual finite element method. Api.Mat.30 (1985), 50-72. Zbl0575.65103MR779332
  7. [7] J. HASLINGER, I. HLAVACEK, Approximation of the Signorini problem with friction by a mixed finite element method. J. Math. Anal. Appl. 86 (1982), 99-122. Zbl0486.73099MR649858
  8. [8] J. HASLINGER, J. LOVISEK, The approximation of the optimal shape control problem governed by a variational inequality with flux cost functional. To appear in Proc. Zbl0625.73025MR831811
  9. [9] J. HASLINGER, P. NEITTAANMÄKI, On the existence of optimal shapes in contact problems, Numer. Funct. Anal, and Optimiz. 7 (1984), 107-124. Zbl0559.73099MR767377
  10. [10] J. HASLINGER, P. NEITTAANMÄKI, T TIIHONEN, On optimal shape design of an elastic body on a rigid foundation. To appear in Proc. of the MAFELAP Confe-rence 1984. Zbl0588.73159MR811062
  11. [11] J. NECAS, I. HLAVACEK, Mathematical theory of elastic and elasto-plastic bodies.Elsevier, Amsterdam 1981. Zbl0448.73009
  12. [12] V. B WATWOOD, B. J. HARTZ, An equilibrium stress field model for finite element solution of two-dimensional elastostatic problems. Internat. J. Solids Structures 4 (1968), 857-873. Zbl0164.26201

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.