An analysis of the B.P.M. approximation of the Helmholtz equation in an optical fiber
Alain Bamberger; François Coron; Jean-Michel Ghidaglia
- Volume: 21, Issue: 3, page 405-424
- ISSN: 0764-583X
Access Full Article
topHow to cite
topReferences
top- [1] A. BAMBERGER, F. CORON and J. M. GHIDAGLIA, Analyse de la B.P.M.,méthode de résolution approchée de l'équation d'Helmholtz dans une fibreoptique, modélisation, convergence et stabilité. Rapport interne de l'ÉcolePolytechnique 151, Palaiseau, France, 1986.
- [2] J. T. BEALE and A. MAJDA, Rates of convergence for viscous splitting of the Navier-Stokes équations. Math. Comput. 37, 243-260 (1981). Zbl0518.76027MR628693
- [3] M. D. FEIT and J. A. FLECK, Light propagation in graded-index optical fibers, AppL Opt. 17, 3990-3998 (1978).
- [4] R. A. FISCHER and W. K. BISCHEL, Numerical studies of the interplay betweenself phase modulation and dispersion for intense plane wave laser puises, J.Appl. Phys. 46, 4921-4934 (1975).
- [5] A. FRIEDMAN, Partial differential équations, Holt Rinehart and Winston Inc., New York, 1969. Zbl0224.35002MR445088
- [6] J. L. LIONS, Quelques méthodes de résolution desproblèmes aux limites nonlinéaires, Dunod, Paris, 1969. Zbl0189.40603
- [7] J. L. LIONS and E. MAGENES, Nonhomogeneous boundary value problems andapplications, Springer, Berlin, 1972 (and Dunod, Paris 1968). Zbl0223.35039
- [8] L. SCHWARTZ, Théorie des distributions, Hermann, Paris, 1966. Zbl0149.09501MR209834
- [9] E. STEIN and G. WEISS, Fourier analysis in euclidian spaces, Princeton, 1971.
- [10] R. TEMAM, Sur la stabilité et la convergence de la méthode des pas fractionnaires, Ann. Math. Pura. AppL LXXIV, 1968, p.191-380. Zbl0174.45804MR241838