On the approximation of the exterior Stokes problem in three dimensions
Georges H. Guirguis; Max D. Gunzburger
- Volume: 21, Issue: 3, page 445-464
- ISSN: 0764-583X
Access Full Article
topHow to cite
topGuirguis, Georges H., and Gunzburger, Max D.. "On the approximation of the exterior Stokes problem in three dimensions." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 21.3 (1987): 445-464. <http://eudml.org/doc/193509>.
@article{Guirguis1987,
author = {Guirguis, Georges H., Gunzburger, Max D.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Sobolev space; approximation; exterior Stokes problem; Approximation results; error bounds; discretization error; truncation error},
language = {eng},
number = {3},
pages = {445-464},
publisher = {Dunod},
title = {On the approximation of the exterior Stokes problem in three dimensions},
url = {http://eudml.org/doc/193509},
volume = {21},
year = {1987},
}
TY - JOUR
AU - Guirguis, Georges H.
AU - Gunzburger, Max D.
TI - On the approximation of the exterior Stokes problem in three dimensions
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1987
PB - Dunod
VL - 21
IS - 3
SP - 445
EP - 464
LA - eng
KW - Sobolev space; approximation; exterior Stokes problem; Approximation results; error bounds; discretization error; truncation error
UR - http://eudml.org/doc/193509
ER -
References
top- [1] J. BOLAND, Finite Element And The Divergence Constraint for Viscous Flow.Ph. D. Thesis, Carnegie-Mellon University, 1983.
- [2] F. BREZZI, On The Existence Uniqueness And Approximation Of Saddle Point Problems Arising From Lagrangian Multipliers. R.A.I.R.O., Séries AnalyseNumérique 8(R-2) 129-151, 1974. Zbl0338.90047MR365287
- [3] M. CANTOR, Numerical Treatment Of Potential Type Equations On Rn : Theoretical Considerations.SIAM Num. Anal. 20(1) 1983, pp. 72-85. Zbl0512.65086MR687368
- [4] P. CIARLET, The Finite Element Method For Elliptic Problems. North Holland,Amsterdam ; New York, 1978. Zbl0383.65058MR520174
- [5] M. CROUZEIX and P. RAVIART, Conforming And Non-Conforming Finite Element Methods For Solving The Stationary Stokes Equation. R.A.I.R.O., Séries Analyse Numérique 7(R-3) 33-75, 1973. Zbl0302.65087MR343661
- [6] V. GIRAULT and P. RAVIART, Lecture Notes in Mathematics. Volume 749 : Finite element approximation of the Navier-Stokes équations. Springer-Verlag, Berlin, New York, 1979. Zbl0413.65081MR548867
- [7] C. GOLDSTEÏN, The Finite Element Method With Non-uniform Mesh Sizes For Unbounded Domains. Math. comp. 36, pp. 387-404, 1981. Zbl0467.65058MR606503
- [8] G. H. GUIRGUIS, On The Existence, Uniqueness And Regularity Of The Exterior Stokes Problem In R3. Comm. in Partial Differential Equations 11(6), 567-594, 1986. Zbl0608.35056MR837276
- [9] G. H. GUIRGUIS, On The Existence, Uniqueness, Regularity And Approximation Of The Exterior Stokes Problem In R3. Ph. D. Thesis, University of Tennesse, Knoxville, 1983.
- [10] Alvin BAYLISS, Max GUNZBURGER and Eli TURKEL. Boundary Conditions For The Numerical Solution Of Elliptic Equations In Exterior Regions. SIAM J.Applied Math. 42(2), 430-451, 1982. Zbl0479.65056MR650234
- [11] B. HANOUZET, Espaces de Sobolev avec poids. Application à un problème de Dirichlet dans un demi-espace. Rend. Sem. Mat. Univ., Padova, 46, pp. 227-272, 1971. Zbl0247.35041MR310417
- [12] G. HARDY, J. LITTLEWOOD and G. POLYA, Inequalities. Cambridge University press, 1959. Zbl0047.05302JFM60.0169.01
- [13] P. JAMET and P. RAVIART, Numerical Solution of the Stationary Navier-Stokes Equations by Finite Element Methods. In R. Glowinski and J. L. Lions (editors) International Symposium on Computing methods in Applied Sciences and Engineering, pp. 193-223. Springer-Verlag, Berlin, 1973. Zbl0285.76007MR448951
- [14] O. LADYZHENSKAYA, The Mathematical Theory Of Viscous Incompressible Flow. Gordon and Breach, New York, 1969. Zbl0184.52603MR254401
- [15] D. P. O LEARY and O. WIDLUND, Capacitance Matrix Methods For The Helmholtz Equation On General Three Dimensional Regions. Math. Comp., 33, 1979, 849-879. Zbl0407.65047MR528044
- [16] S. P. MARIN, Finite Element Method For Problems Involving The Helmholtz Equation In Two Dimensional Exterior Regions. Ph. D. Thesis, Carnegie-Mellon University, 1978.
- [17] J. NEDELEC and J. PLANCHARD, Une méthode variationnelle d'éléments finis pour la résolution numérique d'un problème extérieur dans R3. R.A.I.R.O., Séries Analyse Numérique 7(R-3) 105-129, 1973. Zbl0277.65074MR424022
- [18] M. N. LE ROUX, Méthode d'éléments finis pour la résolution numérique de problèmes extérieurs en dimension 2. R.A.I.R.O., Séries Analyse Numérique 11(R-1) 27-60, 1977. Zbl0382.65055MR448954
- [19] A. SEQUIRA, On the Coupling Of Boundary Integral And Finite Element Methods For The Exterior Stokes Problem In Two Dimensions. Technical Report 82, École Polytechnique, Centre de Mathématiques appliquées, Palaiseaux, Cedex, France, June, 1982.
- [20] R. TENAM, Navier-Stokes Equations, North Holland, New York, 1979. Zbl0426.35003
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.