On the approximation of the exterior Stokes problem in three dimensions

Georges H. Guirguis; Max D. Gunzburger

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1987)

  • Volume: 21, Issue: 3, page 445-464
  • ISSN: 0764-583X

How to cite

top

Guirguis, Georges H., and Gunzburger, Max D.. "On the approximation of the exterior Stokes problem in three dimensions." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 21.3 (1987): 445-464. <http://eudml.org/doc/193509>.

@article{Guirguis1987,
author = {Guirguis, Georges H., Gunzburger, Max D.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Sobolev space; approximation; exterior Stokes problem; Approximation results; error bounds; discretization error; truncation error},
language = {eng},
number = {3},
pages = {445-464},
publisher = {Dunod},
title = {On the approximation of the exterior Stokes problem in three dimensions},
url = {http://eudml.org/doc/193509},
volume = {21},
year = {1987},
}

TY - JOUR
AU - Guirguis, Georges H.
AU - Gunzburger, Max D.
TI - On the approximation of the exterior Stokes problem in three dimensions
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1987
PB - Dunod
VL - 21
IS - 3
SP - 445
EP - 464
LA - eng
KW - Sobolev space; approximation; exterior Stokes problem; Approximation results; error bounds; discretization error; truncation error
UR - http://eudml.org/doc/193509
ER -

References

top
  1. [1] J. BOLAND, Finite Element And The Divergence Constraint for Viscous Flow.Ph. D. Thesis, Carnegie-Mellon University, 1983. 
  2. [2] F. BREZZI, On The Existence Uniqueness And Approximation Of Saddle Point Problems Arising From Lagrangian Multipliers. R.A.I.R.O., Séries AnalyseNumérique 8(R-2) 129-151, 1974. Zbl0338.90047MR365287
  3. [3] M. CANTOR, Numerical Treatment Of Potential Type Equations On Rn : Theoretical Considerations.SIAM Num. Anal. 20(1) 1983, pp. 72-85. Zbl0512.65086MR687368
  4. [4] P. CIARLET, The Finite Element Method For Elliptic Problems. North Holland,Amsterdam ; New York, 1978. Zbl0383.65058MR520174
  5. [5] M. CROUZEIX and P. RAVIART, Conforming And Non-Conforming Finite Element Methods For Solving The Stationary Stokes Equation. R.A.I.R.O., Séries Analyse Numérique 7(R-3) 33-75, 1973. Zbl0302.65087MR343661
  6. [6] V. GIRAULT and P. RAVIART, Lecture Notes in Mathematics. Volume 749 : Finite element approximation of the Navier-Stokes équations. Springer-Verlag, Berlin, New York, 1979. Zbl0413.65081MR548867
  7. [7] C. GOLDSTEÏN, The Finite Element Method With Non-uniform Mesh Sizes For Unbounded Domains. Math. comp. 36, pp. 387-404, 1981. Zbl0467.65058MR606503
  8. [8] G. H. GUIRGUIS, On The Existence, Uniqueness And Regularity Of The Exterior Stokes Problem In R3. Comm. in Partial Differential Equations 11(6), 567-594, 1986. Zbl0608.35056MR837276
  9. [9] G. H. GUIRGUIS, On The Existence, Uniqueness, Regularity And Approximation Of The Exterior Stokes Problem In R3. Ph. D. Thesis, University of Tennesse, Knoxville, 1983. 
  10. [10] Alvin BAYLISS, Max GUNZBURGER and Eli TURKEL. Boundary Conditions For The Numerical Solution Of Elliptic Equations In Exterior Regions. SIAM J.Applied Math. 42(2), 430-451, 1982. Zbl0479.65056MR650234
  11. [11] B. HANOUZET, Espaces de Sobolev avec poids. Application à un problème de Dirichlet dans un demi-espace. Rend. Sem. Mat. Univ., Padova, 46, pp. 227-272, 1971. Zbl0247.35041MR310417
  12. [12] G. HARDY, J. LITTLEWOOD and G. POLYA, Inequalities. Cambridge University press, 1959. Zbl0047.05302JFM60.0169.01
  13. [13] P. JAMET and P. RAVIART, Numerical Solution of the Stationary Navier-Stokes Equations by Finite Element Methods. In R. Glowinski and J. L. Lions (editors) International Symposium on Computing methods in Applied Sciences and Engineering, pp. 193-223. Springer-Verlag, Berlin, 1973. Zbl0285.76007MR448951
  14. [14] O. LADYZHENSKAYA, The Mathematical Theory Of Viscous Incompressible Flow. Gordon and Breach, New York, 1969. Zbl0184.52603MR254401
  15. [15] D. P. O LEARY and O. WIDLUND, Capacitance Matrix Methods For The Helmholtz Equation On General Three Dimensional Regions. Math. Comp., 33, 1979, 849-879. Zbl0407.65047MR528044
  16. [16] S. P. MARIN, Finite Element Method For Problems Involving The Helmholtz Equation In Two Dimensional Exterior Regions. Ph. D. Thesis, Carnegie-Mellon University, 1978. 
  17. [17] J. NEDELEC and J. PLANCHARD, Une méthode variationnelle d'éléments finis pour la résolution numérique d'un problème extérieur dans R3. R.A.I.R.O., Séries Analyse Numérique 7(R-3) 105-129, 1973. Zbl0277.65074MR424022
  18. [18] M. N. LE ROUX, Méthode d'éléments finis pour la résolution numérique de problèmes extérieurs en dimension 2. R.A.I.R.O., Séries Analyse Numérique 11(R-1) 27-60, 1977. Zbl0382.65055MR448954
  19. [19] A. SEQUIRA, On the Coupling Of Boundary Integral And Finite Element Methods For The Exterior Stokes Problem In Two Dimensions. Technical Report 82, École Polytechnique, Centre de Mathématiques appliquées, Palaiseaux, Cedex, France, June, 1982. 
  20. [20] R. TENAM, Navier-Stokes Equations, North Holland, New York, 1979. Zbl0426.35003

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.