Stability of a finite element method for 3D exterior stationary Navier-Stokes flows

Paul Deuring

Applications of Mathematics (2007)

  • Volume: 52, Issue: 1, page 59-94
  • ISSN: 0862-7940

Abstract

top
We consider numerical approximations of stationary incompressible Navier-Stokes flows in 3D exterior domains, with nonzero velocity at infinity. It is shown that a P1-P1 stabilized finite element method proposed by C. Rebollo: A term by term stabilization algorithm for finite element solution of incompressible flow problems, Numer. Math. 79 (1998), 283–319, is stable when applied to a Navier-Stokes flow in a truncated exterior domain with a pointwise boundary condition on the artificial boundary.

How to cite

top

Deuring, Paul. "Stability of a finite element method for 3D exterior stationary Navier-Stokes flows." Applications of Mathematics 52.1 (2007): 59-94. <http://eudml.org/doc/33276>.

@article{Deuring2007,
abstract = {We consider numerical approximations of stationary incompressible Navier-Stokes flows in 3D exterior domains, with nonzero velocity at infinity. It is shown that a P1-P1 stabilized finite element method proposed by C. Rebollo: A term by term stabilization algorithm for finite element solution of incompressible flow problems, Numer. Math. 79 (1998), 283–319, is stable when applied to a Navier-Stokes flow in a truncated exterior domain with a pointwise boundary condition on the artificial boundary.},
author = {Deuring, Paul},
journal = {Applications of Mathematics},
keywords = {stationary incompressible Navier-Stokes flows; exterior domains; stabilized finite element methods; stability estimates; stationary incompressible Navier-Stokes flows; exterior domains; stabilized finite element methods; stability estimates},
language = {eng},
number = {1},
pages = {59-94},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Stability of a finite element method for 3D exterior stationary Navier-Stokes flows},
url = {http://eudml.org/doc/33276},
volume = {52},
year = {2007},
}

TY - JOUR
AU - Deuring, Paul
TI - Stability of a finite element method for 3D exterior stationary Navier-Stokes flows
JO - Applications of Mathematics
PY - 2007
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 52
IS - 1
SP - 59
EP - 94
AB - We consider numerical approximations of stationary incompressible Navier-Stokes flows in 3D exterior domains, with nonzero velocity at infinity. It is shown that a P1-P1 stabilized finite element method proposed by C. Rebollo: A term by term stabilization algorithm for finite element solution of incompressible flow problems, Numer. Math. 79 (1998), 283–319, is stable when applied to a Navier-Stokes flow in a truncated exterior domain with a pointwise boundary condition on the artificial boundary.
LA - eng
KW - stationary incompressible Navier-Stokes flows; exterior domains; stabilized finite element methods; stability estimates; stationary incompressible Navier-Stokes flows; exterior domains; stabilized finite element methods; stability estimates
UR - http://eudml.org/doc/33276
ER -

References

top
  1. Sobolev Spaces, Academic Press, New York, 1975. (1975) Zbl0314.46030MR0450957
  2. 10.1002/num.10064, Numer. Methods Partial Differ. Equations 19 (2003), 592–637. (2003) MR1996222DOI10.1002/num.10064
  3. 10.1016/0021-8928(73)90115-9, J.  Appl. Math. Mech. 37 (1973), 651–665. (1973) MR0347214DOI10.1016/0021-8928(73)90115-9
  4. 10.1007/s00021-004-0108-8, J.  Math. Fluid Mech. 7 (2005), 85–107. (2005) MR2127743DOI10.1007/s00021-004-0108-8
  5. The Mathematical Theory of Finite Element Methods, 2nd edition, Springer-Verlag, New York, 2002. (2002) MR1894376
  6. Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York, 1991. (1991) MR1115205
  7. 10.1051/m2an:2000142, M2AN, Math. Model. Numer. Anal. 34 (2000), 303–314. (2000) Zbl0954.76014MR1765661DOI10.1051/m2an:2000142
  8. 10.1051/m2an/1996300708151, M2AN, Math. Model. Numer. Anal. 30 (1996), 815–840. (1996) MR1423081DOI10.1051/m2an/1996300708151
  9. 10.1002/num.20154, Numer. Methods Partial Differ. Equations 22 (2006), 1289-1313. (2006) MR2257634DOI10.1002/num.20154
  10. 10.1002/(SICI)1099-1476(199702)20:3<245::AID-MMA856>3.0.CO;2-F, Math. Methods Appl. Sci. 20 (1997), 245–269. (1997) Zbl0870.76041MR1430495DOI10.1002/(SICI)1099-1476(199702)20:3<245::AID-MMA856>3.0.CO;2-F
  11. 10.1051/m2an/1998320302831, M2AN, Math. Model. Numer. Anal. 32 (1998), 283–305. (1998) Zbl0904.65108MR1627147DOI10.1051/m2an/1998320302831
  12. Approximating exterior flows by flows on truncated exterior domains: piecewise polygonial artificial boundaries, In: Elliptic and Parabolic problems. Proceedings of the 4th  European Conference, Rolduc and Gaeta, 2001, J.  Bemelmans (ed.), World Scientific, Singapore, 2002, pp. 364–376. (2002) MR1937556
  13. 10.1081/PDE-200064436, Commun. Partial Differ. Equations 30 (2005), 987–1020. (2005) MR2180292DOI10.1081/PDE-200064436
  14. A finite element method for 3D  exterior Oseen flows: error estimates, Submitted. Zbl1148.35062
  15. 10.1524/anly.2000.20.1.65, Analysis 20 (2000), 65–90. (2000) MR1757070DOI10.1524/anly.2000.20.1.65
  16. 10.1002/mana.200310167, Math. Nachr. 269–270 (2004), 86–115. (2004) MR2074775DOI10.1002/mana.200310167
  17. A variational approach in weighted Sobolev spaces to the operator - Δ + / x 1 in exterior domains of  3 , Math.  Z. 210 (1992), 449–464. (1992) MR1171183
  18. 10.1007/BF02571437, Math.  Z. 211 (1992), 409–447. (1992) MR1190220DOI10.1007/BF02571437
  19. 10.1142/S0218202598000305, Math. Models Methods Appl. Sci. 8 (1998), 658–684. (1998) MR1634842DOI10.1142/S0218202598000305
  20. Coupled problems for viscous incompressible flow in exterior domains, In: Applied Nonlinear Analysis, A. Sequeira (ed.), Kluwer/Plenum, New York, 1999, pp. 97–116. (1999) MR1727443
  21. 10.1007/PL00000961, J.  Math. Fluid Mech. 3 (2001), 1–17. (2001) MR1830652DOI10.1007/PL00000961
  22. 10.1007/BF00253485, Arch. Ration. Mech. Anal. 19 (1965), 363–406. (1965) Zbl0149.44606MR0182816DOI10.1007/BF00253485
  23. An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol.  I. Linearized Steady Problems (rev. ed.), Springer-Verlag, New York, 1998. (1998) MR1284205
  24. An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol.  II. Nonlinear Steady Problems, Springer-Verlag, New York, 1994. (1994) Zbl0949.35005MR1284206
  25. Finite Element Methods for Navier-Stokes Equations, Springer-Verlag, Berlin, 1986. (1986) MR0851383
  26. 10.1090/S0025-5718-1981-0606503-5, Math. Comput. 36 (1981), 387–404. (1981) Zbl0467.65058MR0606503DOI10.1090/S0025-5718-1981-0606503-5
  27. 10.1137/0730008, SIAM J.  Numer. Anal. 30 (1993), 159–183. (1993) Zbl0772.65075MR1202661DOI10.1137/0730008
  28. Elliptic Problems in Nonsmooth Domains, Pitman, Boston, 1985. (1985) Zbl0695.35060MR0775683
  29. 10.1137/0724023, SIAM J.  Numer. Anal. 24 (1987), 310–322. (1987) MR0881366DOI10.1137/0724023
  30. 10.1051/m2an/1987210304451, M2AN, Math. Model. Numer. Anal. 21 (1987), 445–464. (1987) MR0908240DOI10.1051/m2an/1987210304451
  31. Finite Element Methods for Viscous Incompressible Flows, Academic Press, Boston, 1989. (1989) Zbl0697.76031MR1017032
  32. 10.1137/0520021, SIAM J.  Math. Anal. 20 (1989), 308–353. (1989) MR0982662DOI10.1137/0520021
  33. 10.1016/S0898-1221(02)00266-3, Comput. Math. Appl. 44 (2002), 1413–1429. (2002) Zbl1037.76039MR1938777DOI10.1016/S0898-1221(02)00266-3
  34. 10.1002/(SICI)1097-0363(19960315)22:5<325::AID-FLD307>3.0.CO;2-Y, Int. J.  Numer. Methods Fluids 22 (1996), 325–352. (1996) MR1380844DOI10.1002/(SICI)1097-0363(19960315)22:5<325::AID-FLD307>3.0.CO;2-Y
  35. Global existence of weak solutions of a nonsteady variational inequality of the Navier-Stokes type with mixed boundary conditions, In: Proceedings of the International Symposium on Numerical Analysis (ISNA’92), Charles University, Prague, 1993, pp. 156–177. (1993) 
  36. 10.1016/S0362-546X(01)00534-X, Nonlinear Anal., Theory Methods Appl. 47 (2001), 4169–4180. (2001) MR1972357DOI10.1016/S0362-546X(01)00534-X
  37. Solutions of the Navier-Stokes equations with mixed boundary conditions in a bounded domain, In: Analysis, Numerics and Applications of Differential and Integral Equations. Pitman Research Notes in Mathematics Series  379, M. Bach (ed.), Addison Wesley, London, 1998, pp. 127–131. (1998) MR1606691
  38. A structure of the set of critical points to the Navier-Stokes equations with mixed boundary conditions, In: Navier-Stokes Equations: Theory and Numerical Methods. Pitman Research Notes in Mathematics Series  388, R. Salvi (ed.), Addison Wesley, London, 1998, pp. 201–205. (1998) MR1773598
  39. 10.1023/A:1006185601807, Acta Appl. Math. 54 (1998), 275–288. (1998) MR1671783DOI10.1023/A:1006185601807
  40. 10.1524/anly.1996.16.4.305, Analysis 16 (1996), 305–324. (1996) MR1429456DOI10.1524/anly.1996.16.4.305
  41. Approximation of exterior boundary value problems for the Stokes system, Asymptotic Anal. 14 (1997), 233–255. (1997) MR1458705
  42. 10.1002/mana.200310039, Math. Nachr. 252 (2003), 86–105. (2003) MR1903042DOI10.1002/mana.200310039
  43. Les méthodes directes en théorie des équations elliptiques, Masson, Paris, 1967. (1967) MR0227584
  44. 10.1016/S0377-0427(02)00770-7, J.  Comput. Appl. Math. 152 (2003), 405–409. (2003) Zbl1059.76055MR1991305DOI10.1016/S0377-0427(02)00770-7
  45. Numerical Approximation of Partial Differential Equations, Springer-Verlag, New York, 1994. (1994) MR1299729
  46. 10.1007/s002110050341, Numer. Math. 79 (1998), 283–319. (1998) Zbl0910.76033MR1622522DOI10.1007/s002110050341
  47. 10.1002/mma.1670050124, Math. Methods Appl. Sci. 5 (1983), 356–375. (1983) Zbl0521.76034MR0716661DOI10.1002/mma.1670050124
  48. 10.1002/mma.1670080109, Math. Methods Appl. Sci. 8 (1986), 117–133. (1986) Zbl0619.76039MR0833255DOI10.1002/mma.1670080109
  49. 10.1016/S0168-9274(98)00025-7, Appl. Numer. Math. 27 (1998), 465–532. (1998) Zbl0939.76077MR1644674DOI10.1016/S0168-9274(98)00025-7

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.