Stability of a finite element method for 3D exterior stationary Navier-Stokes flows
Applications of Mathematics (2007)
- Volume: 52, Issue: 1, page 59-94
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topDeuring, Paul. "Stability of a finite element method for 3D exterior stationary Navier-Stokes flows." Applications of Mathematics 52.1 (2007): 59-94. <http://eudml.org/doc/33276>.
@article{Deuring2007,
abstract = {We consider numerical approximations of stationary incompressible Navier-Stokes flows in 3D exterior domains, with nonzero velocity at infinity. It is shown that a P1-P1 stabilized finite element method proposed by C. Rebollo: A term by term stabilization algorithm for finite element solution of incompressible flow problems, Numer. Math. 79 (1998), 283–319, is stable when applied to a Navier-Stokes flow in a truncated exterior domain with a pointwise boundary condition on the artificial boundary.},
author = {Deuring, Paul},
journal = {Applications of Mathematics},
keywords = {stationary incompressible Navier-Stokes flows; exterior domains; stabilized finite element methods; stability estimates; stationary incompressible Navier-Stokes flows; exterior domains; stabilized finite element methods; stability estimates},
language = {eng},
number = {1},
pages = {59-94},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Stability of a finite element method for 3D exterior stationary Navier-Stokes flows},
url = {http://eudml.org/doc/33276},
volume = {52},
year = {2007},
}
TY - JOUR
AU - Deuring, Paul
TI - Stability of a finite element method for 3D exterior stationary Navier-Stokes flows
JO - Applications of Mathematics
PY - 2007
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 52
IS - 1
SP - 59
EP - 94
AB - We consider numerical approximations of stationary incompressible Navier-Stokes flows in 3D exterior domains, with nonzero velocity at infinity. It is shown that a P1-P1 stabilized finite element method proposed by C. Rebollo: A term by term stabilization algorithm for finite element solution of incompressible flow problems, Numer. Math. 79 (1998), 283–319, is stable when applied to a Navier-Stokes flow in a truncated exterior domain with a pointwise boundary condition on the artificial boundary.
LA - eng
KW - stationary incompressible Navier-Stokes flows; exterior domains; stabilized finite element methods; stability estimates; stationary incompressible Navier-Stokes flows; exterior domains; stabilized finite element methods; stability estimates
UR - http://eudml.org/doc/33276
ER -
References
top- Sobolev Spaces, Academic Press, New York, 1975. (1975) Zbl0314.46030MR0450957
- 10.1002/num.10064, Numer. Methods Partial Differ. Equations 19 (2003), 592–637. (2003) MR1996222DOI10.1002/num.10064
- 10.1016/0021-8928(73)90115-9, J. Appl. Math. Mech. 37 (1973), 651–665. (1973) MR0347214DOI10.1016/0021-8928(73)90115-9
- 10.1007/s00021-004-0108-8, J. Math. Fluid Mech. 7 (2005), 85–107. (2005) MR2127743DOI10.1007/s00021-004-0108-8
- The Mathematical Theory of Finite Element Methods, 2nd edition, Springer-Verlag, New York, 2002. (2002) MR1894376
- Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York, 1991. (1991) MR1115205
- 10.1051/m2an:2000142, M2AN, Math. Model. Numer. Anal. 34 (2000), 303–314. (2000) Zbl0954.76014MR1765661DOI10.1051/m2an:2000142
- 10.1051/m2an/1996300708151, M2AN, Math. Model. Numer. Anal. 30 (1996), 815–840. (1996) MR1423081DOI10.1051/m2an/1996300708151
- 10.1002/num.20154, Numer. Methods Partial Differ. Equations 22 (2006), 1289-1313. (2006) MR2257634DOI10.1002/num.20154
- 10.1002/(SICI)1099-1476(199702)20:3<245::AID-MMA856>3.0.CO;2-F, Math. Methods Appl. Sci. 20 (1997), 245–269. (1997) Zbl0870.76041MR1430495DOI10.1002/(SICI)1099-1476(199702)20:3<245::AID-MMA856>3.0.CO;2-F
- 10.1051/m2an/1998320302831, M2AN, Math. Model. Numer. Anal. 32 (1998), 283–305. (1998) Zbl0904.65108MR1627147DOI10.1051/m2an/1998320302831
- Approximating exterior flows by flows on truncated exterior domains: piecewise polygonial artificial boundaries, In: Elliptic and Parabolic problems. Proceedings of the 4th European Conference, Rolduc and Gaeta, 2001, J. Bemelmans (ed.), World Scientific, Singapore, 2002, pp. 364–376. (2002) MR1937556
- 10.1081/PDE-200064436, Commun. Partial Differ. Equations 30 (2005), 987–1020. (2005) MR2180292DOI10.1081/PDE-200064436
- A finite element method for 3D exterior Oseen flows: error estimates, Submitted. Zbl1148.35062
- 10.1524/anly.2000.20.1.65, Analysis 20 (2000), 65–90. (2000) MR1757070DOI10.1524/anly.2000.20.1.65
- 10.1002/mana.200310167, Math. Nachr. 269–270 (2004), 86–115. (2004) MR2074775DOI10.1002/mana.200310167
- A variational approach in weighted Sobolev spaces to the operator in exterior domains of , Math. Z. 210 (1992), 449–464. (1992) MR1171183
- 10.1007/BF02571437, Math. Z. 211 (1992), 409–447. (1992) MR1190220DOI10.1007/BF02571437
- 10.1142/S0218202598000305, Math. Models Methods Appl. Sci. 8 (1998), 658–684. (1998) MR1634842DOI10.1142/S0218202598000305
- Coupled problems for viscous incompressible flow in exterior domains, In: Applied Nonlinear Analysis, A. Sequeira (ed.), Kluwer/Plenum, New York, 1999, pp. 97–116. (1999) MR1727443
- 10.1007/PL00000961, J. Math. Fluid Mech. 3 (2001), 1–17. (2001) MR1830652DOI10.1007/PL00000961
- 10.1007/BF00253485, Arch. Ration. Mech. Anal. 19 (1965), 363–406. (1965) Zbl0149.44606MR0182816DOI10.1007/BF00253485
- An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. I. Linearized Steady Problems (rev. ed.), Springer-Verlag, New York, 1998. (1998) MR1284205
- An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. II. Nonlinear Steady Problems, Springer-Verlag, New York, 1994. (1994) Zbl0949.35005MR1284206
- Finite Element Methods for Navier-Stokes Equations, Springer-Verlag, Berlin, 1986. (1986) MR0851383
- 10.1090/S0025-5718-1981-0606503-5, Math. Comput. 36 (1981), 387–404. (1981) Zbl0467.65058MR0606503DOI10.1090/S0025-5718-1981-0606503-5
- 10.1137/0730008, SIAM J. Numer. Anal. 30 (1993), 159–183. (1993) Zbl0772.65075MR1202661DOI10.1137/0730008
- Elliptic Problems in Nonsmooth Domains, Pitman, Boston, 1985. (1985) Zbl0695.35060MR0775683
- 10.1137/0724023, SIAM J. Numer. Anal. 24 (1987), 310–322. (1987) MR0881366DOI10.1137/0724023
- 10.1051/m2an/1987210304451, M2AN, Math. Model. Numer. Anal. 21 (1987), 445–464. (1987) MR0908240DOI10.1051/m2an/1987210304451
- Finite Element Methods for Viscous Incompressible Flows, Academic Press, Boston, 1989. (1989) Zbl0697.76031MR1017032
- 10.1137/0520021, SIAM J. Math. Anal. 20 (1989), 308–353. (1989) MR0982662DOI10.1137/0520021
- 10.1016/S0898-1221(02)00266-3, Comput. Math. Appl. 44 (2002), 1413–1429. (2002) Zbl1037.76039MR1938777DOI10.1016/S0898-1221(02)00266-3
- 10.1002/(SICI)1097-0363(19960315)22:5<325::AID-FLD307>3.0.CO;2-Y, Int. J. Numer. Methods Fluids 22 (1996), 325–352. (1996) MR1380844DOI10.1002/(SICI)1097-0363(19960315)22:5<325::AID-FLD307>3.0.CO;2-Y
- Global existence of weak solutions of a nonsteady variational inequality of the Navier-Stokes type with mixed boundary conditions, In: Proceedings of the International Symposium on Numerical Analysis (ISNA’92), Charles University, Prague, 1993, pp. 156–177. (1993)
- 10.1016/S0362-546X(01)00534-X, Nonlinear Anal., Theory Methods Appl. 47 (2001), 4169–4180. (2001) MR1972357DOI10.1016/S0362-546X(01)00534-X
- Solutions of the Navier-Stokes equations with mixed boundary conditions in a bounded domain, In: Analysis, Numerics and Applications of Differential and Integral Equations. Pitman Research Notes in Mathematics Series 379, M. Bach (ed.), Addison Wesley, London, 1998, pp. 127–131. (1998) MR1606691
- A structure of the set of critical points to the Navier-Stokes equations with mixed boundary conditions, In: Navier-Stokes Equations: Theory and Numerical Methods. Pitman Research Notes in Mathematics Series 388, R. Salvi (ed.), Addison Wesley, London, 1998, pp. 201–205. (1998) MR1773598
- 10.1023/A:1006185601807, Acta Appl. Math. 54 (1998), 275–288. (1998) MR1671783DOI10.1023/A:1006185601807
- 10.1524/anly.1996.16.4.305, Analysis 16 (1996), 305–324. (1996) MR1429456DOI10.1524/anly.1996.16.4.305
- Approximation of exterior boundary value problems for the Stokes system, Asymptotic Anal. 14 (1997), 233–255. (1997) MR1458705
- 10.1002/mana.200310039, Math. Nachr. 252 (2003), 86–105. (2003) MR1903042DOI10.1002/mana.200310039
- Les méthodes directes en théorie des équations elliptiques, Masson, Paris, 1967. (1967) MR0227584
- 10.1016/S0377-0427(02)00770-7, J. Comput. Appl. Math. 152 (2003), 405–409. (2003) Zbl1059.76055MR1991305DOI10.1016/S0377-0427(02)00770-7
- Numerical Approximation of Partial Differential Equations, Springer-Verlag, New York, 1994. (1994) MR1299729
- 10.1007/s002110050341, Numer. Math. 79 (1998), 283–319. (1998) Zbl0910.76033MR1622522DOI10.1007/s002110050341
- 10.1002/mma.1670050124, Math. Methods Appl. Sci. 5 (1983), 356–375. (1983) Zbl0521.76034MR0716661DOI10.1002/mma.1670050124
- 10.1002/mma.1670080109, Math. Methods Appl. Sci. 8 (1986), 117–133. (1986) Zbl0619.76039MR0833255DOI10.1002/mma.1670080109
- 10.1016/S0168-9274(98)00025-7, Appl. Numer. Math. 27 (1998), 465–532. (1998) Zbl0939.76077MR1644674DOI10.1016/S0168-9274(98)00025-7
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.