Applications numériques de la dualité en mécanique hamiltonienne

Salem Mathlouthi

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1987)

  • Volume: 21, Issue: 3, page 487-520
  • ISSN: 0764-583X

How to cite

top

Mathlouthi, Salem. "Applications numériques de la dualité en mécanique hamiltonienne." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 21.3 (1987): 487-520. <http://eudml.org/doc/193511>.

@article{Mathlouthi1987,
author = {Mathlouthi, Salem},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {periodic solutions; Hamiltonian systems; convergence},
language = {fre},
number = {3},
pages = {487-520},
publisher = {Dunod},
title = {Applications numériques de la dualité en mécanique hamiltonienne},
url = {http://eudml.org/doc/193511},
volume = {21},
year = {1987},
}

TY - JOUR
AU - Mathlouthi, Salem
TI - Applications numériques de la dualité en mécanique hamiltonienne
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1987
PB - Dunod
VL - 21
IS - 3
SP - 487
EP - 520
LA - fre
KW - periodic solutions; Hamiltonian systems; convergence
UR - http://eudml.org/doc/193511
ER -

References

top
  1. [1] A. AMBROSETTI and G. MANCINI, On a theorem by Ekeland and Lasry concerning the number of periodic Hamiltonian trajectories. J. Diff. équation (43) (1981), pp. 1-6. Zbl0492.70018
  2. [2] A. AMBROSETTI and G. MANCINI, Solutions of minimal period for a class of convex Hamiltonian Systems, Math. Ann. 255 (1981) Zbl0466.70022MR615860
  3. [3] J. P. AUBIN and I. EKELAND, Applied Nonlinear Analysis, Willey, New York (1984). Zbl0641.47066MR749753
  4. [4] F. CLARKE and I. EKELAND, Hamiltonian trajectories having prescribed minimal period. Comm. Pure App. Math., t. 33, 1980, pp. 103-116. Zbl0403.70016MR562546
  5. [5] F. CLARKE and I. EKELAND, Nonlinear oscillation and boundary value problem for Hamiltonian system, Archive Rat. Mech. An. Zbl0514.34032
  6. [6] I. EKELAND and J. M. LASRY, On the number of periodic trajectories for a Hamiltonian flew on a convex energy surface, Ann. Math. 112 (1980), pp. 283-319. Zbl0449.70014MR592293
  7. [7] I. EKELAND et R. TEMAM, Analyse convexe et problèmes variationnels, Dunod-Gauthier-Villars, Paris, 1972. Zbl0281.49001MR463993
  8. [8] M. HÉNON, Numerical exploration of Hamiltonian systems. North-Holland Publishing company, 1983. Zbl0578.70019MR724464
  9. [9] M. HÉNON and C. HEILES, (1964) Astron. J. 69, 73. MR158746
  10. [10] M. LEVI, Stability of linear Hamiltonian Systems with periodic coefficients. Research Report. IBM Thomas J. W.R.C. (1977). 
  11. [11] M. MINOUX, Programmation mathématique, théorie et algorithmes. Tome 1, Dunod (1983) Paris. Zbl0546.90056MR714150

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.