Applications numériques de la dualité en mécanique hamiltonienne
- Volume: 21, Issue: 3, page 487-520
- ISSN: 0764-583X
Access Full Article
topHow to cite
topReferences
top- [1] A. AMBROSETTI and G. MANCINI, On a theorem by Ekeland and Lasry concerning the number of periodic Hamiltonian trajectories. J. Diff. équation (43) (1981), pp. 1-6. Zbl0492.70018
- [2] A. AMBROSETTI and G. MANCINI, Solutions of minimal period for a class of convex Hamiltonian Systems, Math. Ann. 255 (1981) Zbl0466.70022MR615860
- [3] J. P. AUBIN and I. EKELAND, Applied Nonlinear Analysis, Willey, New York (1984). Zbl0641.47066MR749753
- [4] F. CLARKE and I. EKELAND, Hamiltonian trajectories having prescribed minimal period. Comm. Pure App. Math., t. 33, 1980, pp. 103-116. Zbl0403.70016MR562546
- [5] F. CLARKE and I. EKELAND, Nonlinear oscillation and boundary value problem for Hamiltonian system, Archive Rat. Mech. An. Zbl0514.34032
- [6] I. EKELAND and J. M. LASRY, On the number of periodic trajectories for a Hamiltonian flew on a convex energy surface, Ann. Math. 112 (1980), pp. 283-319. Zbl0449.70014MR592293
- [7] I. EKELAND et R. TEMAM, Analyse convexe et problèmes variationnels, Dunod-Gauthier-Villars, Paris, 1972. Zbl0281.49001MR463993
- [8] M. HÉNON, Numerical exploration of Hamiltonian systems. North-Holland Publishing company, 1983. Zbl0578.70019MR724464
- [9] M. HÉNON and C. HEILES, (1964) Astron. J. 69, 73. MR158746
- [10] M. LEVI, Stability of linear Hamiltonian Systems with periodic coefficients. Research Report. IBM Thomas J. W.R.C. (1977).
- [11] M. MINOUX, Programmation mathématique, théorie et algorithmes. Tome 1, Dunod (1983) Paris. Zbl0546.90056MR714150