Applications numériques de la dualité en mécanique hamiltonienne

Salem Mathlouthi

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1987)

  • Volume: 21, Issue: 3, page 487-520
  • ISSN: 0764-583X

How to cite

top

Mathlouthi, Salem. "Applications numériques de la dualité en mécanique hamiltonienne." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 21.3 (1987): 487-520. <http://eudml.org/doc/193511>.

@article{Mathlouthi1987,
author = {Mathlouthi, Salem},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {periodic solutions; Hamiltonian systems; convergence},
language = {fre},
number = {3},
pages = {487-520},
publisher = {Dunod},
title = {Applications numériques de la dualité en mécanique hamiltonienne},
url = {http://eudml.org/doc/193511},
volume = {21},
year = {1987},
}

TY - JOUR
AU - Mathlouthi, Salem
TI - Applications numériques de la dualité en mécanique hamiltonienne
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1987
PB - Dunod
VL - 21
IS - 3
SP - 487
EP - 520
LA - fre
KW - periodic solutions; Hamiltonian systems; convergence
UR - http://eudml.org/doc/193511
ER -

References

top
  1. [1] A. AMBROSETTI and G. MANCINI, On a theorem by Ekeland and Lasry concerning the number of periodic Hamiltonian trajectories. J. Diff. équation (43) (1981), pp. 1-6. Zbl0492.70018
  2. [2] A. AMBROSETTI and G. MANCINI, Solutions of minimal period for a class of convex Hamiltonian Systems, Math. Ann. 255 (1981) Zbl0466.70022MR615860
  3. [3] J. P. AUBIN and I. EKELAND, Applied Nonlinear Analysis, Willey, New York (1984). Zbl0641.47066MR749753
  4. [4] F. CLARKE and I. EKELAND, Hamiltonian trajectories having prescribed minimal period. Comm. Pure App. Math., t. 33, 1980, pp. 103-116. Zbl0403.70016MR562546
  5. [5] F. CLARKE and I. EKELAND, Nonlinear oscillation and boundary value problem for Hamiltonian system, Archive Rat. Mech. An. Zbl0514.34032
  6. [6] I. EKELAND and J. M. LASRY, On the number of periodic trajectories for a Hamiltonian flew on a convex energy surface, Ann. Math. 112 (1980), pp. 283-319. Zbl0449.70014MR592293
  7. [7] I. EKELAND et R. TEMAM, Analyse convexe et problèmes variationnels, Dunod-Gauthier-Villars, Paris, 1972. Zbl0281.49001MR463993
  8. [8] M. HÉNON, Numerical exploration of Hamiltonian systems. North-Holland Publishing company, 1983. Zbl0578.70019MR724464
  9. [9] M. HÉNON and C. HEILES, (1964) Astron. J. 69, 73. MR158746
  10. [10] M. LEVI, Stability of linear Hamiltonian Systems with periodic coefficients. Research Report. IBM Thomas J. W.R.C. (1977). 
  11. [11] M. MINOUX, Programmation mathématique, théorie et algorithmes. Tome 1, Dunod (1983) Paris. Zbl0546.90056MR714150

NotesEmbed ?

top

You must be logged in to post comments.