Approximation of eigenvalues of differential equations with non-smooth coefficients

Uday Banerjee

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1988)

  • Volume: 22, Issue: 1, page 29-51
  • ISSN: 0764-583X

How to cite

top

Banerjee, Uday. "Approximation of eigenvalues of differential equations with non-smooth coefficients." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 22.1 (1988): 29-51. <http://eudml.org/doc/193512>.

@article{Banerjee1988,
author = {Banerjee, Uday},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {eigenvalues; eigenfunctions; finite element method; spectral approximation; error estimates; non-smooth coefficients},
language = {eng},
number = {1},
pages = {29-51},
publisher = {Dunod},
title = {Approximation of eigenvalues of differential equations with non-smooth coefficients},
url = {http://eudml.org/doc/193512},
volume = {22},
year = {1988},
}

TY - JOUR
AU - Banerjee, Uday
TI - Approximation of eigenvalues of differential equations with non-smooth coefficients
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1988
PB - Dunod
VL - 22
IS - 1
SP - 29
EP - 51
LA - eng
KW - eigenvalues; eigenfunctions; finite element method; spectral approximation; error estimates; non-smooth coefficients
UR - http://eudml.org/doc/193512
ER -

References

top
  1. [1] R. S. ANDERSSEN, J. R. CLEARY, Asymptotic Structure in Torsional Free Oscillations of Earth I. Geophys. J. R. Astr. Soc., 39, 1974, 241-268. Zbl0365.73095
  2. [2] I. BABUSKA, J. E. OSBORN, Numerical Treatment of Eigenvalue Problems for Differential Equations with Discontinuons Coefficients. Math. Comp., 32, 1978, 991-1023. Zbl0418.65053MR501962
  3. [3] I BABUSKA, J. E. OSBORN, Analysis of Finite Element Methods for Second Order Boundary Value Problems using Mesh Dependent Norms. Numer. Math., 34, 1980, 41-62. Zbl0404.65055MR560793
  4. [4] I. BABUSKA, J. E. OSBORN, Generalized Finite Element Methods : Their Performance and Their Relation to Mixed Methods. SIAM J. Numer. Anal., 20, 1983, 510-536. Zbl0528.65046MR701094
  5. [5] U. BANERJEE, Lower Norm Error Estimates for Approximate Solutions of Differential Equations with Non-Smooth Coefficients. Numer. Math, 51, 1987,303-321. Zbl0613.65087MR895089
  6. [6] U. BANERJEE, Approximation of Eigenvalues of Differential Equations with Rough Coefficients. Ph. D. thesis, 1985, Univ. of Md., College Park, MD 20742. 
  7. [7] J. H. BRAMBLE, J. E. OSBORN, Rate of Convergence Estimate for Non-Selfadjoint Eigenvalue Approximations. Math. Comp., 27, 1973, 523-549. Zbl0305.65064MR366029
  8. [8] F. CHATELIN, Spectral Approximation of Linear Operators, Academia Press, 1983. Zbl0517.65036MR716134
  9. [9] R. S. FALK, J. E. OSBORN, Error Estimates for Mixed Methods, R.A.I.R.O. Numer. Anal. 14, 1980, 249-277. Zbl0467.65062MR592753
  10. [10] S. K. GARG, V. SVALBONAS and G. A. GURTMAN, Analysis of structural Composite Materials, Marcel Dekker, NY, 1973. 
  11. [11] E. R. LAPWOOD, The Effect of Discontinuities in Density and Rigidity on Torsional Eigenfrequencies. Geophys. J. R. Astr. Soc., 1975, 40, 453-464. Zbl0297.73064
  12. [12] S. NEMAT-NASSER, General Variational Methods for Elastic Waves in Composities. J. Elasticity, 2, 1972, 73-90. 
  13. [13] S. NEMAT-NASSER, General Variational Principles in Nonlinear and Linear Elasticity with Applications. Mechanics Today, 1, 1974, 214-261. Zbl0305.73007
  14. [14] S. NEMAT-NASSER, F. FU, Harmonic Waves in Layered Composites ; Bounds on Eigenfrequencies, J. Appl. Mech., 41, 1974, 288-290. Zbl0296.73025
  15. [15] J. R. OSBORN, Spectral Approximation of Compact Operators. Math. Comp., 29, 1975, 712-725. Zbl0315.35068MR383117

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.