Theoretical study and optimization of a fluid-structure interaction problem
- Volume: 22, Issue: 1, page 75-92
- ISSN: 0764-583X
Access Full Article
topHow to cite
topDeneuvy, A. C.. "Theoretical study and optimization of a fluid-structure interaction problem." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 22.1 (1988): 75-92. <http://eudml.org/doc/193525>.
@article{Deneuvy1988,
author = {Deneuvy, A. C.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {small harmonic vibrations; elastoacoustic coupled system; symmetric variational formulation; existence of a real spectrum of eigenvalues; resonance; external excitation frequencies},
language = {eng},
number = {1},
pages = {75-92},
publisher = {Dunod},
title = {Theoretical study and optimization of a fluid-structure interaction problem},
url = {http://eudml.org/doc/193525},
volume = {22},
year = {1988},
}
TY - JOUR
AU - Deneuvy, A. C.
TI - Theoretical study and optimization of a fluid-structure interaction problem
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1988
PB - Dunod
VL - 22
IS - 1
SP - 75
EP - 92
LA - eng
KW - small harmonic vibrations; elastoacoustic coupled system; symmetric variational formulation; existence of a real spectrum of eigenvalues; resonance; external excitation frequencies
UR - http://eudml.org/doc/193525
ER -
References
top- [1] M. A. HAMDI, Y. OUSSET, G. VERCHERY, 1978, A Displacement method for the analysis of vibrations of coupled Fluid-Structure Systems. Int. Journal for Num. Meth. in Eng., vol. 13, n° 1, pp. 139-150. Zbl0384.76060
- [2] C. FELIPPA, 1986, Some aspects of the Symmetrization of the contained Compressible Fluid-Vibration eigenproblem in Innovating Numerical Methods in Engineering. Springer-Verlag Berlin. Heidelberg. New York. Tokyo. Zbl0595.76069
- [3] R. OHAYON, 1979, Formulation variationnellle symétrique du problème des vibrations harmoniques par couplage des principes primal et dual. Application aux oscillations de systèmes couplés fluide-strucutre. La Recherche Aérospatiale, n° 3 (mai-juin), pp. 207-211. Zbl0422.73046
- [4] J. BOUJOT, 1986, Mathematical formulation of fluid-structure interactions problems. To appear in M2AN. Zbl0617.73052MR896242
- [5] H. BERGER, J. BOUJOT, R. OHAYON, 1975, On a spectral problem in vibration mechanics computation of elastic tanks partially filled with liquids. Journal of Mathematical analysis and applications, 51, pp. 272-298. Zbl0311.73053MR386456
- [6] R. OHAYON, 1984, Transient and modal analysis of bounded medium fluid-structure Problems. In Numerical Methods for transient and coupled problems. Venice.
- [7] G. DUVAUT, J. L. LIONS, 1972, Les inéquations variationnelles en mécanique et en physique. Dunod, Paris. Zbl0298.73001MR464857
- [8] A. C. DENEUVY, 1986, Etude d'un problème de conception optimale avec critère sur les fréquences pour un système couplé fluide-strucutre. Thèse. Ecole Centrale de Lyon.
- [9] A. C. DENEUVY, 1987, A new modal synthesis method for a fluid-structure problem. Resolution and Optimization. (To appear).
- [10] J. DENY, J. L. LIONS, 1953, Les espaces de type Beppo-Levi. Ann. Inst. Fourier (Grenoble), 5, pp. 305-370. Zbl0065.09903MR74787
- [11] H. BREZIS, 1983, Analyse fonctionnelle (Théorie et Applications). Masson, Paris. Zbl0511.46001MR697382
- [12] M. P. BENDSOE, N. OLHOFF, 1983, A method of design against vibration resonance of beams and shafts. First IASTED International Symposium on applied control and identification, Copenhagen Denmark, June. Zbl0569.49009
- [13] N. OLHOFF, R. PLAUT, 1983, Bimodal optimization of vibrating shallow arches. Int. J. structures, vol. 19, n° 5, pp. 663-670. Zbl0511.73098
- [14] N. OLHOFF, 1973, On singularities, Local Optima and Formation of stiffners in optimal design of plates. Report n° 56, September DC. AMN. The technical University of Denmark. Zbl0333.73052
- [15] J. E. TAYLOR, M. P. BENDSOE, 1984, An interpretation for Min-Max structural design Problems including a Method for relaxing constraints. Int. J. Solids Structures, vol. 20, n° 4, pp. 301-314. Zbl0531.73062MR737512
- [16] M. P. BENDSOE, 1984, Existence proofs for a class of plate optimization problems. Lecture notes in Control and Information Sciences, vol. 59, Springer, pp. 773-779). Zbl0542.49002MR769713
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.