Theoretical study and optimization of a fluid-structure interaction problem

A. C. Deneuvy

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1988)

  • Volume: 22, Issue: 1, page 75-92
  • ISSN: 0764-583X

How to cite

top

Deneuvy, A. C.. "Theoretical study and optimization of a fluid-structure interaction problem." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 22.1 (1988): 75-92. <http://eudml.org/doc/193525>.

@article{Deneuvy1988,
author = {Deneuvy, A. C.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {small harmonic vibrations; elastoacoustic coupled system; symmetric variational formulation; existence of a real spectrum of eigenvalues; resonance; external excitation frequencies},
language = {eng},
number = {1},
pages = {75-92},
publisher = {Dunod},
title = {Theoretical study and optimization of a fluid-structure interaction problem},
url = {http://eudml.org/doc/193525},
volume = {22},
year = {1988},
}

TY - JOUR
AU - Deneuvy, A. C.
TI - Theoretical study and optimization of a fluid-structure interaction problem
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1988
PB - Dunod
VL - 22
IS - 1
SP - 75
EP - 92
LA - eng
KW - small harmonic vibrations; elastoacoustic coupled system; symmetric variational formulation; existence of a real spectrum of eigenvalues; resonance; external excitation frequencies
UR - http://eudml.org/doc/193525
ER -

References

top
  1. [1] M. A. HAMDI, Y. OUSSET, G. VERCHERY, 1978, A Displacement method for the analysis of vibrations of coupled Fluid-Structure Systems. Int. Journal for Num. Meth. in Eng., vol. 13, n° 1, pp. 139-150. Zbl0384.76060
  2. [2] C. FELIPPA, 1986, Some aspects of the Symmetrization of the contained Compressible Fluid-Vibration eigenproblem in Innovating Numerical Methods in Engineering. Springer-Verlag Berlin. Heidelberg. New York. Tokyo. Zbl0595.76069
  3. [3] R. OHAYON, 1979, Formulation variationnellle symétrique du problème des vibrations harmoniques par couplage des principes primal et dual. Application aux oscillations de systèmes couplés fluide-strucutre. La Recherche Aérospatiale, n° 3 (mai-juin), pp. 207-211. Zbl0422.73046
  4. [4] J. BOUJOT, 1986, Mathematical formulation of fluid-structure interactions problems. To appear in M2AN. Zbl0617.73052MR896242
  5. [5] H. BERGER, J. BOUJOT, R. OHAYON, 1975, On a spectral problem in vibration mechanics computation of elastic tanks partially filled with liquids. Journal of Mathematical analysis and applications, 51, pp. 272-298. Zbl0311.73053MR386456
  6. [6] R. OHAYON, 1984, Transient and modal analysis of bounded medium fluid-structure Problems. In Numerical Methods for transient and coupled problems. Venice. 
  7. [7] G. DUVAUT, J. L. LIONS, 1972, Les inéquations variationnelles en mécanique et en physique. Dunod, Paris. Zbl0298.73001MR464857
  8. [8] A. C. DENEUVY, 1986, Etude d'un problème de conception optimale avec critère sur les fréquences pour un système couplé fluide-strucutre. Thèse. Ecole Centrale de Lyon. 
  9. [9] A. C. DENEUVY, 1987, A new modal synthesis method for a fluid-structure problem. Resolution and Optimization. (To appear). 
  10. [10] J. DENY, J. L. LIONS, 1953, Les espaces de type Beppo-Levi. Ann. Inst. Fourier (Grenoble), 5, pp. 305-370. Zbl0065.09903MR74787
  11. [11] H. BREZIS, 1983, Analyse fonctionnelle (Théorie et Applications). Masson, Paris. Zbl0511.46001MR697382
  12. [12] M. P. BENDSOE, N. OLHOFF, 1983, A method of design against vibration resonance of beams and shafts. First IASTED International Symposium on applied control and identification, Copenhagen Denmark, June. Zbl0569.49009
  13. [13] N. OLHOFF, R. PLAUT, 1983, Bimodal optimization of vibrating shallow arches. Int. J. structures, vol. 19, n° 5, pp. 663-670. Zbl0511.73098
  14. [14] N. OLHOFF, 1973, On singularities, Local Optima and Formation of stiffners in optimal design of plates. Report n° 56, September DC. AMN. The technical University of Denmark. Zbl0333.73052
  15. [15] J. E. TAYLOR, M. P. BENDSOE, 1984, An interpretation for Min-Max structural design Problems including a Method for relaxing constraints. Int. J. Solids Structures, vol. 20, n° 4, pp. 301-314. Zbl0531.73062MR737512
  16. [16] M. P. BENDSOE, 1984, Existence proofs for a class of plate optimization problems. Lecture notes in Control and Information Sciences, vol. 59, Springer, pp. 773-779). Zbl0542.49002MR769713

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.